k&n高流量空濾壽命的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列各種有用的問答集和懶人包

另外網站大口吸氣更帶勁!K&N高流量空氣濾芯與專用清潔保養組超划算 ...也說明:大家是否有發現明明說好的換空濾,怎麼整個進氣組都變高級了呢? ... 由美國進氣改裝大廠K&N所推出的這款高流量空氣濾芯,為了搭配集氣箱因此採用俗稱 ...

中原大學 化學工程研究所 張雍所指導 唐碩禧的 研究穩定抗生物分子沾黏材料之分子結構設計、改質程序建構及生物醫學應用 (2021),提出k&n高流量空濾壽命關鍵因素是什麼,來自於穩定、抗沾黏、生醫材料、生物惰性、表面自由能、環氧基、壓克力材料、水解、電漿、超音波噴塗、紫外光固化。

而第二篇論文中原大學 化學工程學系 陳昱劭所指導 吳佳玲的 以超重力技術氣提非牛頓流體中的揮發性有機物 (2021),提出因為有 超重力、氣提、非牛頓流體的重點而找出了 k&n高流量空濾壽命的解答。

最後網站產品介紹 - Maxspeed-捷而興則補充:K&N 的風隔向來確保有暢通無阻的氣流,同時又必須有絕佳的濾清效果以確保您的引擎壽命。 K&N流量風隔採用三層特殊構造過濾外來空氣,第一層為油脂層,能將污垢、灰塵 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了k&n高流量空濾壽命,大家也想知道這些:

研究穩定抗生物分子沾黏材料之分子結構設計、改質程序建構及生物醫學應用

為了解決k&n高流量空濾壽命的問題,作者唐碩禧 這樣論述:

  自二戰時期到現在,生物惰性材料已發展超過80個年頭,科學家們已了解到利用氫鍵受體或是雙離子結構,可產生厚實的水合層來屏蔽生物分子。然而,進行生物惰性的改質時,由於表面自由能與粗糙度的影響,會讓改質劑難以良好地附著在材料表面上,並在乾燥過程中產生皺縮甚至龜裂的現象。此外,目前的化學接枝方式不但程序繁瑣又耗時,使用藥劑又對環境不友善。而更令人煩惱的是,目前絕大多數的改質劑都是使用具有酯類或是醯胺類官能基的壓克力材料,對於長時間在生物環境中使用會有水解的疑慮,進而導致使用壽命減少的風險產生。  因此,本論文將分別著重在-改質物的附著性提升、快速化學接枝、抗水解之生物惰性結構設計等三部份進行探討

。以期望未來的生醫材料之設計與生產,能夠朝向穩定而快速的改質以及耐用來發展。  本論文第一部份使用常壓空氣電漿進行5分鐘的表面活化,使表面氧元素增加24倍,並大幅降低改質物PS-co-PEGMA的聚集現象。而超音波微粒噴塗技術不但可精確控制改質密度達0.01 mg/cm2,且當達到0.3 mg/cm2時,表面即被改質物完整覆蓋。以此技術進行生化檢測盤改質,可提升8倍的檢測靈敏度,使試劑即便稀釋128倍,仍具有高度辨識性。  本論文第二部份使用親水性雙離子環氧樹脂Poly(GMA-co-SBMA)搭配UV光固化技術,可使每平方公尺的PET不織布纖維薄膜僅需11.5 g的高分子,並照光不到30分鐘

,即可降低近8成的血液貼附及9成的細胞貼附。未來對於PU及PEEK的改質,或是應用在微流道及微型晶片實驗室之領域,這種一步驟快速化學接枝的清潔製程,具有相當大的應用潛力。  本論文第三部份使用非壓克力型雙離子高分子zP(S-co-4VP),對材料進行快速的自組裝塗佈改質。不但可降低98%的細菌與血液貼附量,且經過高溫濕式滅菌後的細菌貼附量僅上升74%,而壓克力型雙離子高分子P(S-co-SBMA)卻增加192%。這對於未來在發酵產業、反覆滅菌、長時間使用等需求來說,具有相當大的應用潛力。

以超重力技術氣提非牛頓流體中的揮發性有機物

為了解決k&n高流量空濾壽命的問題,作者吳佳玲 這樣論述:

旋轉填充床(rotating packed bed, RPB)是製程強化的設備之一,能利用離心力場產生比傳統填充塔高出幾百倍的質傳效率,是製程強化的關鍵。在文獻中有許多對於黏性流體在RPB中質傳係數影響的相關研究,但大部分都是針對牛頓流體進行探討,比較少針對非牛頓流體的質傳特性進行研究,因此本研究的目的在於探討非牛頓流體的質傳特性,使用旋轉填充床氣提羧甲基纖維素(Carboxymethyl Cellulose Sodium Salt, CMC)水溶液中的丙酮,探討RPB轉速、氣體流率、液體流率、CMC水溶液濃度對丙酮移除率(E)和總括氣膜質傳速率(KGa)的影響。 實驗結果顯示

,CMC水溶液的黏度會隨轉速增加而下降,尤其在1.0 wt% CMC時更明顯,轉速從500 rpm提升至2000 rpm時,黏度可降低約14% (20 cp)。在RPB氣提丙酮程序中,黏度對丙酮移除率和總括氣膜質傳速率的影響很小,且丙酮移除率和總括氣膜質傳速率不會隨著CMC濃度增加而下降。丙酮移除率隨轉速增加、氣體流率增加而上升,隨液體流率增加而下降,最佳丙酮移除率可達到62.38%,為0.6 wt% CMC在轉速2000 rpm,氣體流率70 NL/min,液體流率100 ml/min;總括氣膜質傳速率會隨轉速增加、氣體流率增加、液體流率增加而上升,最佳總括氣膜質傳速率可達到9.36 s-1

為0.6 wt% CMC在轉速2000 rpm,氣體流率70 NL/min,液體流率300 ml/min。 將KGa的實驗值與計算值比較後可以發現實驗值的KGa確實比填充塔的KGa計算值高很多,尤其是高黏度流體時,代表在高黏度流體下使用RPB進行氣提可以有更好的質傳效率。