jitter計算的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列各種有用的問答集和懶人包

jitter計算的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦李凱寫的 高速數字接口原理與測試指南 可以從中找到所需的評價。

另外網站定时抖动Timing jitter - 泮桥成像光电商城也說明:定时抖动Timing jitter. 图1:理论上计算出的10 GHz Er:Yb:玻璃微型激光器的量子限制时序抖动频谱(单边带噪声以dBc/Hz为单位,获得如下式10 lg ...

國立臺灣大學 應用物理研究所 呂宥蓉所指導 楊景崴的 隙電漿子增強之氮化鈮超導光子偵測器的開發與應用 (2021),提出jitter計算關鍵因素是什麼,來自於超導性氮化鈮薄膜、超導微米線光子偵測器、奈米製程、隙電漿子、可見光偵測。

而第二篇論文國立中山大學 電機工程學系研究所 王朝欽所指導 蘇文健的 具迴轉率與責任週期自動調整之FinFET製程多重電壓輸出緩衝器與電晶體漏電流偵測器設計 (2021),提出因為有 DDR4、FinFET、電壓迴轉率、輸出緩衝器、漏電流偵測器的重點而找出了 jitter計算的解答。

最後網站webrtc源码分析(6)- jitter delay计算详解- woder - 博客园則補充:本文主要介绍webrtc jitter buffer的平滑原理和平滑视频抖动最关键的指标-jitter delay的计算.

接下來讓我們看這些論文和書籍都說些什麼吧:

除了jitter計算,大家也想知道這些:

高速數字接口原理與測試指南

為了解決jitter計算的問題,作者李凱 這樣論述:

結合作者李凱多年從事高速數字設計和測試的經驗,對高速數字信號的基本概念、測試原理進行講解,同時結合現代計算機、移動設備、有線通信、航天設備里最新的高速數字接口,對其關鍵技術、測試方法等做詳細介紹和總結,以便於讀者理解和掌握高速數字接口的基本原理、實現技術、測試理念以及其發展趨勢。本書主要分為兩個部分:上半部分是高速數字信號的基本概念和測量原理;下半部分是常用高速數字接口總線的技術特點和測試方法。本書可供從事計算機、移動終端、有線通信、航空航天設備開發的工程人員了解學習高速數字總線的相關技術,也可供高校工科電子類的師生做數字電路、信號完整性方面的教學參考。 上部 高速數字信號

測量原理 第1章 無處不在的數字接口 第2章 數字信號基礎 2.1 什麼是數字信號(Digital Signal) 2.2 數字信號的上升時間(Rising Time) 2.3 數字信號的帶寬(Bandwidth) 2.4 數字信號的建立/保持時間(Setup/Hold Time) 2.5 並行總線與串行總線(Parallel and Serial Bus) 2.6 單端信號與差分信號(Single-ended and Differential Signals) 2.7 數字信號的時鍾分配(Clock Distribution) 2.8

串行總線的8b/10b編碼(8b/10b Encoding) 2.9 偽隨機碼型(PRBS) 2.10 傳輸線對數字信號的影響(Transmission Line Effects) 2.11 數字信號的預加重(Pre-emphasis) 2.12 數字信號的均衡(Equalization) 2.13 數字信號的抖動(Jitter) 2.14 擴頻時鍾(SSC) 第3章 數字測試基礎 3.1 數字信號的波形分析(Waveform Analysis) 3.2 數字信號的眼圖分析(Eye Diagram Analysis) 3.3 眼圖的參數

測量(Eye Diagram Measurement) 3.4 眼圖的模板測試(Mask Test) 3.5 數字信號抖動的成因(Root Cause of Jitter) 3.6 數字信號的抖動分解(Jitter Seperation) 3.7 串行數據的時鍾恢復(Clock Recovery) 3.8 示波器的抖動測量能力(Jitter Measurement Floor of Scope) 3.9 相位噪聲測量(Phase Noise Measurement) 3.10 傳輸線的特征阻抗(Characteristic Impedance)

3.11 特征阻抗的TDR測試(Time Domain Reflectometer) 3.12 傳輸線的建模分析(Transmission Line Modelling) 第4章 實時示波器原理 4.1 模擬示波器(Analog Oscilloscope) 4.2 數字存儲示波器(Digital Storage Oscilloscope) 4.3 示波器的帶寬(Bandwidth) 4.4 示波器的頻響方式(Frequency Response) 4.5 示波器帶寬對測量的影響(Bandwidth Impact) 4.6 示波器的帶寬增強技術(Ba

ndwidth Enhancement Technology) 4.7 示波器的頻帶交織技術(Bandwidth Interleaving Technology) 4.8 示波器的采樣技術(Sampling Technology) 4.9 示波器的分辨率(Vertical Resolution) 4.10 示波器的直流電壓測量精度(DC Voltage Accuracy) 4.11 示波器的時間測量精度(Delta-Time Accuracy) 4.12 示波器的等效位數(ENOB) 4.13 示波器的高分辨率模式(High Resolution)

4.14 示波器的內存深度(Memory Depth) 4.15 示波器的死區時間(Dead Time) 4.16 示波器的顯示模式(Display Mode) 4.17 示波器的觸發(Trigger) 4.18 示波器的觸發條件(Trigger Conditions) 4.19 示波器的觸發模式(Trigger Mode) 4.20 示波器的測量速度(Measurement update rate) 附錄 Agilent 公司90000X系列高端示波器原理 第5章 示波器探頭原理 5.1 高阻無源探頭(High Impedance Pa

ssive Probe) 5.2 無源探頭的常用附件(Passive Probe Accessories) 5.3 低阻無源探頭(Low Impedance Passive Probe) 5.4 有源探頭(Active Probe) 5.5 差分探頭(Differential Probe) 5.6 電流探頭(Current Probe) 5.7 高靈敏度探頭(High-sensitivity Probe) 5.8 探頭連接前端對測量的影響(Probe Head) 5.9 探頭衰減比對測量的影響(Probe Attenuation Ratio)

5.10 探頭的校准方法(Probe Calibration) 第6章 其他常用數字測量儀器 6.1 采樣示波器(Sampling Oscilloscope) 6.2 矢量網絡分析儀與TDR(VNA and TDR) 6.3 邏輯分析儀(Logic Analyzer) 6.4 協議分析儀(Protocol Analyzer) 6.5 誤碼分析儀(Bit Error Ratio Tester) 附錄1 Agilent公司U4154A邏輯分析儀簡介 附錄2 示波器協議解碼功能和協議分析儀的區別 第7章 常用測量技巧 7.1 電源紋波噪聲測

試方法 7.2 時間間隔測量 7.3 如何用示波器進行ps級時間精度的測量 7.4 怎樣測量PLL電路的鎖定時間 7.5 T型頭和功分器的區別 7.6 如何克服測試電纜對高頻測量的影響 第8章 用多台儀器搭建自動測試系統 8.1 自動化測試系統 8.2 LXI測試系統的硬件平台 8.3 LXI測試系統的軟件架構 8.4 LXI測試系統的優點 8.5 LXI測試系統的兼容性問題 8.6 LXI測試系統的時鍾同步 8.7 LXI測試系統的網絡安全性下部 高速數字接口及測試方法 第9章 PCI-E簡介及信號和協議測試方

法 9.1 PCI-E總線簡介 9.2 PCI-E 協會簡介 9.3 PCI-E信號質量測試 9.4 PCI-E協議調試和測試 9.5 PCI-E測試總結和常見問題 第10章 PCI-E 3.0簡介及信號和協議測試方法 10.1 PCI-E 3.0數據速率的變化 10.2 PCI-E 3.0發送端的變化 10.3 PCI-E 3.0接收端的變化 10.4 PCI-E 3.0信號質量測試 10.5 PCI-E 3.0接收端容限測試 10.6 PCI-E 3.0協議的測試 10.7 PCI-E 3.0測試總結及常見問題

第11章 SATA簡介及信號和協議測試方法 11.1 SATA總線簡介 11.2 SATA協會簡介 11.3 SATA發送信號質量測試 11.4 SATA接收容限測試 11.5 SATA協議層測試和調試 11.6 SATA測試總結及常見問題 第12章 Ethernet簡介及信號測試方法 12.1 以太網技術簡介 12.2 10Base-T以太網測試項目 12.3 100Base-Tx以太網測試項目 12.4 1000Base-T以太網測試項目 12.5 10M/100M/1000M以太網的測試 12.6 10GBas

e-T的測試項目及測試 12.7 XAUI和10GBase-CX4測試方法 12.8 SFP+/10GBase-KR接口及測試方法 12.9 100G以太網標准及測試方法 12.10 100G及更高速率相干光通信測試方法 12.11 以太網測試總結及常見問題 第13章 MIPI D-PHY簡介及信號和協議測試方法 13.1 MIPI 簡介 13.2 MIPI D-PHY簡介 13.3 MIPI D-PHY信號質量測試 13.4 MIPI D-PHY的接收端容限測試 13.5 MIPI CSI/DSI的協議測試 13.6 MI

PI D-PHY測試總結及常見問題 第14章 MIPI M-PHY簡介及信號和協議測試方法 14.1 MIPI M-PHY簡介 14.2 MIPI M-PHY的信號質量測試 14.3 MIPI M-PHY的協議解碼 14.4 DigRF簡介 14.5 DigRF物理層測試 14.6 DigRF協議層測試 14.7 MIPI M-PHY測試總結及常見問題 第15章 存儲器簡介及信號和協議測試 15.1 存儲器簡介 15.2 DDR簡介 15.3 DDR信號的讀寫分離 15.4 DDR的信號探測技術 15.5 DDR的

信號測試 15.6 DDR的協議測試 15.7 eMMC簡介及測試 15.8 SD卡/UHS簡介及測試 15.9 存儲器測試總結及常見問題 第16章 USB 2.0簡介及信號和協議測試 16.1 USB 2.0簡介 16.2 USB 2.0的信號質量測試方法 16.3 USB 2.0信號質量測試中的測試模式設置 16.4 USB 2.0協議層調試方法 16.5 USB測試總結及常見問題 第17章 USB 3.0簡介及信號和協議測試 17.1 USB 3.0簡介 17.2 USB 3.0的發送端信號質量測試 17.3

USB 3.0信號質量測試中的測試碼型和LFPS信號 17.4 USB 3.0的接收容限測試 17.5 USB 3.0的電纜、連接器測試 17.6 USB 3.0的協議測試 17.7 USB 3.0測試總結及常見問題 第18章 HDMI 簡介及信號和協議測試 18.1 數字顯示接口 18.2 HDMI 簡介 18.3 HDMI 發送信號質量測試 18.4 HDMI 電纜和連接器的測試 18.5 HDMI 接收容限測試 18.6 HDMI 的協議層測試 18.7 HDMI 1.4 HEAC的測試 18.8 HDMI

測試總結及常見問題 第19章 MHL簡介及信號和協議測試 19.1 MHL簡介 19.2 MHL發送信號質量測試 19.3 MHL接收容限測試 19.4 MHL的協議測試 19.5 MHL測試總結及常見問題 第20章 DisplayPort簡介及信號測試 20.1 DisplayPort簡介 20.2 DisplayPort發送信號質量測試 20.3 DisplayPort接收容限測試 20.4 DisplayPort電纜和連接器測試 20.5 MYDP簡介及測試 20.6 DisplayPort測試總結及常見問題 第

21章 LVDS傳輸系統簡介及測試 21.1 LVDS簡介 21.2 LVDS的數字邏輯測試 21.3 LVDS信號質量測試 21.4 LVDS 互連電纜和PCB的阻抗測試 21.5 LVDS 系統誤碼率測試 21.6 LVDS測試總結 第22章 MIL-STD-1553B簡介及測試 22.1 1553總線簡介 22.2 1553總線的觸發和解碼 22.3 1553總線的測試 22.4 1553總線的未來

隙電漿子增強之氮化鈮超導光子偵測器的開發與應用

為了解決jitter計算的問題,作者楊景崴 這樣論述:

超導光偵測器由於有極低的暗計數及極短的時間抖動,因此擁有卓越的偵測表現。然而大多數文獻探討的偵測器僅在優化近紅外光波段,可見光的研究鮮少被研究。另一方面,超導奈米線單光子偵測器由於具有高於微米線的內秉偵測效率,在過去十年已被廣泛研究,但考量到低動感與光纖耦合率高等特性,微米線亦有發展的必要。在本論文中,我們利用超高真空射頻磁控濺鍍機,並在800 ºC 的基板溫度下成長出以氧化鎂為基板的氮化鈮薄膜,其具有高品質的晶相。此外,我們發現由於在濺鍍過程中,氮化鈮薄膜超導性會受到氬氮氣流比、靶材種類、射頻功率、成長溫度以及成長基板影響,藉由調整以上參數,我們優化氮化鈮的金屬性及超導性(相變溫度達到15

.5 K)。我們利用橢圓偏光儀、X射線光電子光譜、原子力顯微鏡、穿透式電子顯微鏡、X射線干涉圖形以及超導量子干涉元件來測定氮化鈮薄膜的品質。為了增加光偵測力,我們在氮化鈮微米線上加上5奈米的氧化鋁及銀的奈米立方共振器形成隙電漿子,其共振波段設定在可見光區域,超導態在可見光入射下,將因為被局域強場的破壞,而提高光偵測力。此外我們利用時域有限差分計算奈米立方的場分布,並發現為入射光波長532奈米時,邊長40奈米、厚度30 奈米的銀顆粒在邊緣有很強的電漿共振。因此,藉由增加有隙電漿共振的奈米結構,光子的響應在9 K被推廣至可見光波段,特別在入射光波長為532奈米,其中最小可偵測到的光強為4.4奈瓦特

。最後我們將進一步討論其機制及在氮化鈮超導單光子偵測器上應用的潛力,如大偵測面積及偏振無關性等。

具迴轉率與責任週期自動調整之FinFET製程多重電壓輸出緩衝器與電晶體漏電流偵測器設計

為了解決jitter計算的問題,作者蘇文健 這樣論述:

隨著製程的進步,傳輸訊號的速度也隨之增加,但越先進製程其漏電流越大,訊號的品質也越容易受環境影響,因此各種傳輸規格對於訊號品質的要求也越加重視。故本論文針對環境及漏電流對訊號品質的影響,提出兩個設計,分別為具有迴轉率與責任週期自動調整之FinFET製程多重電壓輸出緩衝器以及單一電晶體漏電流偵測器設計。本論文第一題目為具迴轉率與責任週期自動調整之FinFET製程多重電壓輸出緩衝器,且為符合16 nm FinFET製程之系統電壓(0.8 V)與DDR4介面規格的輸出電壓要求(1.2 V),輸出級的電路由堆疊式電晶體組成,並使用臨界電壓較低的電晶體,避免高電位差產生的閘極氧化層過壓、漏電流路徑等問

題。另外,為降低因製程環境改變而產生的電壓迴轉率變異,增加一PVT偵測器,可根據製程環境變異控制輸出級之電流量,使電壓迴轉率保持穩定。本論文第二題目提出一電晶體漏電流偵測器設計,因現有文獻中的漏電流偵測大多是針對一獨有電路的漏電流進行補償,沒有明確的漏電流大小,且鮮少有可廣泛應用於不同電路的設計。而本設計可應用於不同電路及製程中,並能準確偵測出電晶體漏電流大小的數值。本設計主要針對一P/N型電晶體漏電流進行偵測,並加入閃控脈波產生器作為偵測啟動開關,使偵測時間的長度固定且規範化,增加偵測結果的可信度。