rna-seq的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列各種有用的問答集和懶人包

rna-seq的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦寫的 Plant Metabolic Engineering: Methods and Protocols 和的 Solanum Tuberosum: Methods and Protocols都 可以從中找到所需的評價。

另外網站RNA-seq Data Analysis: A Practical Approach (Chapman ...也說明:"RNA-seq is currently the best method for genome-wide transcriptional profiling of cells in about any organism. This book includes all the key steps, in ...

這兩本書分別來自 和所出版 。

國立嘉義大學 生命科學全英文碩士學位學程 朱紀實、陳立耿所指導 梅柏安的 不同發芽條件(無菌和非無菌)、根瘤菌感染、發酵方法和時間對發酵和非發酵大豆及其發芽時異黃酮含量變化的影響 (2021),提出rna-seq關鍵因素是什麼,來自於發酵、大豆、米麴菌、異黃酮、發芽。

而第二篇論文國立陽明交通大學 資訊科學與工程研究所 洪瑞鴻所指導 莊凱鈞的 轉錄本表達量量化演算法之變數評估及其模型改良 (2021),提出因為有 轉錄本表達量、RNA-Seq、EM 演算法、等價類、新生 RNA、多重映射、亂度的重點而找出了 rna-seq的解答。

最後網站Galaxy則補充:ChIP-seq. RNA-seq. Multiple Alignments. Phenotype Association. Evolution. Regional Variation. STR-FM: Microsatellite Analysis. Chromosome Conformation.

接下來讓我們看這些論文和書籍都說些什麼吧:

除了rna-seq,大家也想知道這些:

Plant Metabolic Engineering: Methods and Protocols

為了解決rna-seq的問題,作者 這樣論述:

Preface...Table of Contents...Contributing Authors...1. Methods for the Development of Recombinant Microorganisms for the Production of Natural Products Alexander Perl, YeJong Yoo, Hunter Dalton, and Mattheos A. G. Koffas2. Sustainable Technological Methods for the Extraction of Phytochemicals fr

om Citrus ByproductsSalvatore Multari, Fulvio Mattivi, and Stefan Martens3. Reconstitution of Metabolic Pathway in Nicotiana benthamianaChenggang Liu4. A Protocol for Phylogenetic Reconstruction Soham Sengupta and Rajeev K. Azad5. RNA-Seq Data Analysis Pipeline for Plants: Transcriptome Assembly, Al

ignment, and Differential Expression AnalysisDavid J. Burks and Rajeev K. Azad6. A Protocol for Horizontally Acquired Metabolic Gene Detection in AlgaeRavi S. Pandey and Rajeev K. Azad7. Global Comparative Label-Free Yeast Proteome Analysis by LC-MS/MS After High-pH Reversed-Phase Peptide Fractionat

ion Using Solid-Phase Extraction CartridgesKhadiza Zaman, Prajita Pandey, Vladimir Shulaev, and Laszlo Prokai8. Gas Chromatography Coupled to Atmospheric Pressure Chemical IonizationHigh Resolution Mass Spectrometry for Metabolite Fingerprinting of Grape (Vitis vinifera L.) BerryJohana S. Revel, Arm

ando Alcazar Magana, Jeffrey Morré, Laurent Deluc, and Claudia S. Maier9. GC-MS/MS Profiling of Plant MetabolitesFeroza Kaneez Choudhury, Prajita Pandey, Ron Mittler, Dwain Cardona, Amit C. Gujar, and Vladimir Shulaev10. Analysis of Grape Volatiles using Atmospheric Pressure Ionization Gas Chromatog

raphy Mass Spectrometry-Based MetabolomicsManoj Ghaste, Fulvio Mattivi, Giuseppe Astarita, and Vladimir Shulaev11. A High-Throughput HILIC-MS-Based Metabolomic Assay for the Analysis of Polar Metabolites Giuseppe Paglia and Giuseppe Astarita12. Macrolipidomic Profiling of Vegetable Oils: The Analysi

s of Sunflower Oils with Different Oleic Acid ContentJuan J. Aristizabal-Henao and Ken D. Stark13. Non-Targeted Lipidomics using a Robust and Reproducible Lipid Separation using UPLC with Charged Surface Hybrid Technology and High Resolution Mass SpectrometryGiorgis Isaac, Vladimir Shulaev, and Robe

rt S. Plumb14. Comprehensive Analysis of Plant Lipids using Sub-2 m Particle CO2-Based Chromatography Coupled to Mass SpectrometryCarolina Salazar, Michael D. Jones, Giorgis Isaac, and Vladimir Shulaev15. Bioinformatics in Lipidomics: Automating Large-Scale LC-MS-Based Untargeted Lipidomics Profilin

g with SimLipid SoftwareNingombam Sanjib Meitei and Vladimir Shulaev16. A Protocol for Prion Discovery in Plants Jamie D. Dixson and Rajeev K. Azad17. Structural Determination of Uridine Diphosphate Glycosyltransferases using X-Ray CrystallographyKasandra Alderete and Xiaoqiang WangSubject Index Lis

t...

rna-seq進入發燒排行的影片

不同發芽條件(無菌和非無菌)、根瘤菌感染、發酵方法和時間對發酵和非發酵大豆及其發芽時異黃酮含量變化的影響

為了解決rna-seq的問題,作者梅柏安 這樣論述:

Soybean Glycine max L. 是一種普遍存在的豆科作物,以富含異黃酮而聞名,最初生長在中國和其他亞洲國家,然後傳播到世界各地。無論是發酵的還是非發酵的大豆,其種子通常作為其他類型的加工食品食用。大豆富含油脂和蛋白質,特別是對於缺乏動物蛋白質和產品來源的人來說是很好的食品,因此造成產量和消費量皆急劇增加。豆漿和豆肉是素食者眾所周知的食物和蛋白質。在發現異黃酮的益處後,許多人對其興趣開始上升,尤其是對女性而言,它們的作用類似於類固醇雌激素,因此得名植物雌激素。科學家們研究了途徑、機制、影響和副作用、編碼基因以及這些酚類化合物如何促進人類健康。目的本研究旨在評估發酵大豆、無菌和非無

菌發芽大豆在有或無微生物接種的15天發芽過程中異黃酮和總化學成分的變化。材料和方法A. 發酵大豆大豆樣品經歷了1個月、2個月和6個月的傳統乾燥發酵後,分析原始培養基和米麴菌種以研究它們與異黃酮合成的關係。B. 發芽大豆無菌條件主要集中在含糖瓊脂培養基中的發芽,其中瓊脂培養基由10%的蔗糖組成。首先,種子經過滅菌,然後鋪在培養基上,用封口膜密封以防止污染,然後放置在光控中心(光照12小時,黑暗12小時),在第五天、第十天和十五天收集樣品。非無菌條件包括土壤培養基,其中滅菌的種子在高壓滅菌的土壤中發芽,未滅菌的種子在非高壓滅菌的土壤中發芽。兩個實驗均在發芽5天後接種微生物培養物,持續4天和9天。C

. 異黃酮的HPLC分析使用LiChrospher 100 RP-18e(4 mm i.d x 250 mm,5μm)和Waters 2996光電二極管陣列檢測器進行反相RP–18 HPLC分析。HPLC條件由0.05% TFA-CH3CN (88_12_grade-40_PDA 3D) 組成,流動相A為 0.95% CH3CN,B由 0.05% 三氟乙酸-乙腈 (TFA)的水溶液組成。注射體積為10 μl。柱溫40℃,流速1 ml/min。在254和280 nm處進行檢測。254-280 nm的紫外檢測主要檢測酚基。執行以下梯度程序: 90%-10% A;88:12;0分鐘,85%-15%

A;60:40;55分鐘,70%-30% A;88:12;56分鐘,10%~90% A;88:12;65分鐘。總共65分鐘的線性梯度程序。根據異黃酮線性回歸公式計算未識別的保留時間(化合物)。D. 統計分析SigmaStat 3.5 (501 Canal Blvd, Suite E Point Richmond, CA 94804-2028 USA) 用於進行統計分析。雙向和單向方差分析確定了發酵方法和發芽對異黃酮水平的影響。P

Solanum Tuberosum: Methods and Protocols

為了解決rna-seq的問題,作者 這樣論述:

Importance of Potato as a Crop and Practical Approaches to Potato Breeding.- Cryopreservation of Potato Shoot Tips for Long Term Storage.- RNA Sequencing Analyses for Deciphering Potato Molecular Response.- Yeast-2-hybrid Screening for Identification of Protein-Protein Interactions in Solanum tub

erosum.- Potato as a Model for Field Trials with Modified Gene Functions in Research And Translational Experiments.- DAP-seq Identification of Transcription Factor Binding Sites in Potato.- Mass Spectrometric Monitoring Of Plant Hormone Crosstalk During Biotic Stress Responses In Potato (Solanum tub

erosum L.).- A Comprehensive Guide to Potato Transcriptome Assembly.- MapMan visualization of RNA-seq data using Mercator4 functional annotations.- Identification of Resistance Genes Using Diagnostic R-gene Enrichment Sequencing (dRenSeq).- Methodologies for Discovery and Quantitative Profiling of s

RNAs in Potato.- Co-expression for Genotype-Phenotype Function Annotation In Potato Research.- Computer Vision and Less Complex Image Analyses to Monitor Potato Traits In Fields.- Quantifying the contribution to virulence of Phytophthora infestans effectors in potato.- Identification of Solanum immu

ne receptors by Bulked Segregant RNA-Seq and high-Throughput Recombinant Screening.- Gene editing in potato using CRISPR-Cas9 technology.- Gene downregulation in potato roots using Agrobacterium rhizogenes-mediated Transformation.- Molecular Detection of Ralstonia solanacearum to Facilitate Breeding

for Resistance to Bacterial Wilt in Potato.- Towards the design of potato tolerant to abiotic stress.- Rapid loop-mediated isothermal amplification for detection of the Ralstonia solanacearum species complex bacteria in symptomatic potato tubers and plants.

轉錄本表達量量化演算法之變數評估及其模型改良

為了解決rna-seq的問題,作者莊凱鈞 這樣論述:

準確地量化轉錄本表達量幫助了解在不同環境條件之下,哪些轉錄本有表達以及表達量多寡。在使用RNA-Seq產生的讀數進行轉錄本表達量量化的研究之中,目標是要辨識出每一條讀數來源於哪一個轉錄本,而困難之處在於當讀數產生自轉錄本們之共有序列時,便會難以辨認。現有之量化演算法大多使用Expectation-maximization (EM)演算法以得到優化後之轉錄本表達量,於每一次迭代,參數會被計算並且用以更新轉錄本表達量。目前主要有兩類量化演算法:alignment-based類方法以及alignment-free類方法,準確度差異主要來自是否簡化用於優化讀數分配之參數,參數可直接透過所有讀數及來源

轉錄本之對齊機率計算,此類方法準確度較高,但執行時間較長;亦可將讀數聚在一起,聚合這群讀數之轉錄本-讀數對齊機率成單一個權重,從而簡化用於優化之參數,採用此簡化策略之量化演算法執行時間較快,但相對會損失一些準確度。我們統整了現有量化演算法之共同變因,分析這些變因之核心概念,接著提出這些變因之潛在問題,並且透過資料集對於這些潛在問題進行驗證。最後,基於ㄧ個低執行時間且高準確度之現有量化演算法,我們對於這些潛在問題提出解決方法並進行改良,以更準確地量化轉錄本表達量。