absorber原理的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列各種有用的問答集和懶人包

國立陽明交通大學 電子研究所 鄭裕庭所指導 許睿祐的 應用於13.56MHz無線能量傳輸增益之超穎材料微型化設計與驗證 (2021),提出absorber原理關鍵因素是什麼,來自於超穎材料、無線傳輸。

而第二篇論文國立臺灣科技大學 材料科學與工程系 郭中豐所指導 劉東凱的 田口法與灰關聯分析法對奈米流體-相變化-太陽能光電熱系統的最佳化參數設計研究 (2021),提出因為有 太陽能光電熱複合模組、相變化材料、奈米流體、最佳化、田口方法、灰關聯分析法、TRNSYS的重點而找出了 absorber原理的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了absorber原理,大家也想知道這些:

應用於13.56MHz無線能量傳輸增益之超穎材料微型化設計與驗證

為了解決absorber原理的問題,作者許睿祐 這樣論述:

先前研究已開發出應用於植入式醫療器材無線充電效能增益之13.56MHz超穎材料(Metamaterial),並證實此超穎材料能提升無線充電天線線圈在未對準或是距離太遠之能量傳輸效率。由於先前提出的超穎材料尺寸過大,無法成功應用於現實生活中的無線充電系統,例如:智慧型手機、無線滑鼠甚至是植入式醫療器材等。本研究論文則提出利用鎳鋅軟磁作為磁性材料增加超穎材料的電感值進而微縮其尺寸,將原先超穎材料邊長從8.5cm縮小至6.5cm並測試其對於天線線圈無線傳輸的效率增益性,由量測結果可發現,傳輸距離在2cm以上,當置入微型化之超穎材料後,天線能量傳輸效率將有提升,且當傳輸距離越大,增益效率會越大。當傳

輸距離到3.5cm時,傳輸效率甚至能從原先之4%上升至11%,有近乎3倍的效率增益;另外,在天線線圈有水平錯位或是傾斜角度時,傳輸效率也能因置入超穎材料而有更好的傳輸效率,且當未對準的情況越嚴重時,傳輸效率的增益會越大,因此本研究證實利用磁性材料可以有效微縮超穎材料,並能維持相同之傳輸效率增益的效果,研究成果將有助於未來應用於植入式醫療器材之無線充電系統。

田口法與灰關聯分析法對奈米流體-相變化-太陽能光電熱系統的最佳化參數設計研究

為了解決absorber原理的問題,作者劉東凱 這樣論述:

本研究主要是對奈米流體-相變化-太陽能光電熱複合模組進行製程參數最佳化。本研究在傳統太陽能光電熱(Photovoltaic/thermal system,PV/T)模組的基礎上,加入相變化材料(Phase change material,PCM)以及奈米流體以提高PV/T模組的發電效率與儲熱效率。同時利用田口方法與灰關聯分析法,探究模組的十個參數:PCM材料、工作流體種類、工作流體質量流率、模組傾斜角度、集熱管數量、集熱管徑、方位角、水箱容積/集熱板面積(Volume to area,V/A)比、集熱板厚度、集熱板材料對系統的發電效率與儲熱效率的影響,並找到一組最佳的參數配置。本研究主要使用

TRNSYS模擬軟體對PV/T複合模組進行建模分析。選擇實驗需要的相變化材料(有機石蠟)與奈米流體(CuO、Al2O3奈米流體)後,首先建立TRNSYS模型,並利用田口方法(Taguchi method)進行實驗規劃,配置L36(21×39)直交表進行實驗,配合主效果分析與變異數分析,探究每個控制因子對兩個品質特性(發電效率與儲熱效率)的影響,進而得到兩個單品質最佳化參數配置。再利用多品質最佳化理論之灰關聯分析法(Grey relational analysis),得到多品質最佳化的參數配置,最後按照此最佳化配置進行實際驗證確認結果的可靠程度。結果顯示,傳統PV/T模組的發電效率為12.74%

,儲熱效率為34.06%,而經本研究最佳化後,奈米流體-相變化-太陽能光電熱複合模組的發電效率為14.958%, 儲熱效率為64.764%。相較於傳統PV/T系統,發電效率提高了2.218%,儲熱效率提高了30.704%。單品質與多品質的最佳化參數組合的確認實驗結果均落在95%信賴區間之內,證明最佳化結果可靠並具有可再現性,同時實際驗證與模擬實驗的結果誤差皆小於5%,證明模擬測試具有可信度。