UC7 215 45 18的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列各種有用的問答集和懶人包

國立陽明交通大學 生醫光電研究所 薛特所指導 高聖禹的 Upconversion Nanohybrids for Intracellular pH Imaging and Broadband Photodetection (2020),提出UC7 215 45 18關鍵因素是什麼,來自於Upconversion、MoS2、熒光蛋白、奈米混成、共振能量轉移、光電探測、細胞內pH成像。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了UC7 215 45 18,大家也想知道這些:

Upconversion Nanohybrids for Intracellular pH Imaging and Broadband Photodetection

為了解決UC7 215 45 18的問題,作者高聖禹 這樣論述:

Nanohybrids or nanocomposites (NC) offer a wider scope in materials engineering andapplications by utilizing the extended range properties of the individual component materials,and those from the novel interfacial properties. An intriguing aspect of such NC is the chargetransfer that happens among

the components. Synthetic techniques are plenty; however,choosing the correct combination for the NC is important depending on target applications,such as intracellular pH sensing and photodetection, in particular. Previously reportedfluorescent nanoprobes for intracellular pH sensing had drawbacks,

such as shallow penetrationdepth of the excitation light, background autofluorescence, poor photostability, andbiocompatibility. On the other hand, pure or single material-based photodetector devices,although having a fast response, either lacked broadband response, have poorphotoresponsivity, or b

oth. Through this thesis, we have attempted to design and synthesizetwo novels NC of upconversion nanoparticles (UCNPs): i) with mOrange (mO) fluorescentprotein (FP) for fluorescence-based intracellular pH sensing; ii) with molybdenum disulfide(MoS2) for ultrasensitive broadband photodetection, that

overcomes the above-mentionedissues.First, we have constructed a Forster Resonance Energy Transfer (FRET) based pH nanoprobeutilizing the charge transfer between the UCNP donor and the mOrange FP acceptor forintracellular pH sensing. The UCNP-mOrange nanoprobes (on a coverslip or uptaken in asingle

HeLa cell) could be fluorescently imaged with 980 nm excitation. The FRET probesshow FRET efficiency of ~20% at pH = 7.0 and show pH-sensitive simultaneous selfratiometric and ratiometric features. Nigericin-mediated intracellular pH (3.0, 5.0, and 7.0)could be accurately estimated from the fluores

cence-derived FRET ratio. The nanoprobeiiiexhibits good accuracy, reversibility, and stability over a wide range of pH (3.0–8.0), eveninside a cell. The fluorescence intensity ratio from UCNP and mOrange could be used toestimate the pH inside a single HeLa cell.In the second case, we have fabricated

a photodetector (PD) device with a single flake of MoS2electrostatically conjugated with the UCNPs. The idea was to extend the conventional workingrange of the MoS2, within 200-680 nm, to the near-infrared (NIR) regime. The device wasirradiated with power-dependent 325-1064 nm illumination to study

its broadbandphotosensitivity. The highest responsivity of 1254 A W-1 is reported for 980 nm at 1.0 V bias.An unprecedented normalized gain of 7.12 x 104 cm2 V-1, and Detectivity of 1.05 x 1015 Jones(@980 nm, 1 V) was obtained. The real application of the PD device was demonstrated usingnon-laser d

omestic appliances such as sodium vapor lamp, mobile phone flashlight, and aircondition remote controller.