Charge cable的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列各種有用的問答集和懶人包

Charge cable的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦Chris Grabenstein寫的 Mr. Lemoncello and the Titanium Ticket 和Kushnick, Bruce的 The Book of Broken Promises: 400 Billion Broadband Scandal & Free the Net都 可以從中找到所需的評價。

另外網站Mobile Phone Cables | Electronics | BIG W也說明:Shop for the latest products within our Mobile Phone Cables range at the lowest prices ... Moki Syncharge Braided 2 In 1 Lightning & MicroUSB Charging Cable.

這兩本書分別來自 和所出版 。

中原大學 工業與系統工程研究所 郭財吉、黃博滄所指導 範氏庄的 在動態和瞬態操作下評估微電網的電池儲 能和太陽能發電源的可靠度 (2021),提出Charge cable關鍵因素是什麼,來自於電池儲能係統、轉換器、動態操作、故障分析、逆變器、微電網、光伏系統、可靠度、瞬態操作。

而第二篇論文長庚大學 電子工程學系 賴朝松所指導 Mamina Sahoo的 基於石墨烯及生物碳基材料的可撓式電晶體應用與能量攫取 (2021),提出因為有 石墨烯、氟化石墨烯、太阳能电池、摩擦纳米发电机、生物碳、能量收集器的重點而找出了 Charge cable的解答。

最後網站Apple USB-C Charge Cable (2m) - Amazon.com則補充:A charging cable is basically a simplified full-featured cable with the high-speed data lines removed, allowing for a less expensive USB-C cable that can still ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Charge cable,大家也想知道這些:

Mr. Lemoncello and the Titanium Ticket

為了解決Charge cable的問題,作者Chris Grabenstein 這樣論述:

解謎的時間又到了! Mr. Lemoncello《列蒙切洛圖書館》系列第五集     ★ Mr. Lemoncello系列首部作品,雄踞紐約時報暢銷排行榜27週,2017年改編成同名電影   ★ 全球銷售已突破100萬冊   ★ 榮獲《艾葛莎獎》兒童青少年神秘小說獎、《安東尼獎》兒童青少年小說獎     人見人愛的遊戲大師列蒙切洛(Mr. Lemoncello)再度現身!離開魔法圖書館的他,這次打造出一個新的基地——充滿秘密的基地!如果想要深入這棟建築的核心,你必須通過重重考驗,拿到入場的唯一門票:Titanium Ticket!      四個幸運的孩子將可

參加這場史上最壯觀的尋寶遊戲,他們將面對摩天大樓一般高的疊疊樂遊戲、令人眼花撩亂的梯盤棋,每場比賽都將讓他們越來越接近最後的獎品。但其實還有一個真正的秘密!列蒙切洛大師正在考慮尋找接班人,而得到Titanium Ticket的贏家,將在下一本書中參加競賽,贏得列蒙切洛先生的遊戲帝國!      Welcome! For the first time, you are invited INSIDE Mr. Lemoncello's one-of-a-kind Gameworks Factory in book five of the fun-filled, action-packed

bestselling series from the much-loved coauthor of the I Funny and Max Einstein series! Now with a brand-new look packed with shelf and kid appeal!     Welcome! For the first time, you are invited INSIDE Mr. Lemoncello's one-of-a-kind Gameworks Factory in book five of the fun-filled, action-pack

ed bestselling series from the much-loved coauthor of the I Funny and Max Einstein series!     Now with a brand-new look packed with shelf and kid appeal!     Far away from his magical library, everyone's favorite game maker, Luigi Lemoncello, is building something new. Something SECRET. And

he's about to let the world see it. He'll reveal that hidden deep within the Lemoncello-tastic new building is a single ticket. A titanium ticket.      Four lucky boys and girls are about to win the chance to go inside the building on a spectacular scavenger hunt that will take them through big

ger-than-life live-action games--towering, skyscraper-size Jenga; dizzying real-life Chutes and Ladders; death-defying games of Rush Hour; plus ball pit moats and more! Each game will get the players closer to the titanium ticket. But the real secret? Mr. Lemoncello is thinking about his legacy, and

whichever player finds the ticket will be the first to win a spot in an elite group of kids who will compete in the next books to win Mr. Lemoncello's ENTIRE EMPIRE!     * "A worthy successor to . . . Willy Wonka." --Booklist, starred review of Escape from Mr. Lemoncello's Library 作者簡介  

Chris Grabenstein      When I talk to kids about my new book THE ISLAND OF DR. LIBRIS, I torture them with a tale of electronics deprivation.     "My main character, Billy Gillfoyle," I say, "is spending the summer in a cabin on a lake.  There is no cable, no TV, no DVR, no X-Box, no PlaySt

ation 3.  There isn't even an old-fashioned VCR."     By this point, the kids' gasps become audible.     "On his first day at the cabin," I continue, "Billy drops his iPhone and it shatters.  The nearest Apple store is several hundred miles away."     Jaws drop.  The kids are practically

weeping – just like my hero, Billy Gillfoyle.  He mopes around the cabin after the demise of his iPhone and ends up in this scene with his mother:        "Billy, what do you think kids did back before video games or TV or even electricity?"   "I don't know.  Cried a lot?"  He plopped down dra

matically on the couch.     "No, Billy. They read books.  They made up stories and games.  They took nothing and turned it into something."     And that's what happens to Billy in this book:  He learns to start using and trusting his own imagination.     Characters from books that he rea

ds in Dr. Libris' study start coming to life out on the island in the middle of the lake.   In no time, Hercules, the monster Antaeus, Robin Hood, Maid Marian, The Three Musketeers, D'Artagnan, Pollyanna, and Tom Sawyer are all bumping into each other's stories.  It's up to Billy, with the help of h

is new friend Walter, and a bookcase filled with classic literature, to "imagine" a scenario that will bring all the conflicts to a tidy resolution.      Yep.  In THE ISLAND OF DR. LIBRIS, Billy Gillfoyle is learning how to become a writer.  He puts his characters into situations and conflicts t

hat will, ultimately, take him to the happy ending he, and everybody else, is looking for.     When all seems lost, he is on the island with his new friends Robin Hood, Maid Marian, and Hercules, despairing that he's not heroic enough to rescue his asthmatic friend Walter from the clutches of th

e evil Space Lizard (yes, hideous creatures from video games and fairy tales eventually come to life on the island, too.)      "Ho, lads and lassie!" said Robin Hood.  "All is not lost!  Look you, Sir William – I remember a time when Sir Guy of Gisbourne held me captive in his tower.  Did my ban

d of merry followers let a moat or castle walls stand in their way?"     "Nay!" said Marian.  "Little John and I didst lead the charge.  Oh, how the arrows did fly that day!"     "I'm not Little John," Billy said quietly.  "Or you, Maid Marian.  I'm not a hero."  He looked down at Walter's i

nhaler.  "I'm just a kid who can't even save his own family."     "Nonsense," said Maid Marian. "Each of us can choose who or what we shall be.  We write our own stories, Sir William.  We write them each and every day."     "And," added Hercules, "if you write it boldly enough, others will w

rite about you, too."     In my book ESCAPE FROM MR. LEMONCELLO'S LIBRARY, I wanted to make young readers excited about reading and doing research.  I tried to turn a trip to the library into an incredibly fun scavenger hunt, filled with puzzles and surprises.  (In my perpetually twelve-years-ol

d mind, that's what doing research actually is.)     With THE ISLAND OF DR. LIBRIS, I am hoping to excite young readers about the power and awesomeness of their own imaginations. I want them to take nothing and turn it into something.  To take two old ideas, toss them together, and create someth

ing new.     And, when they write their own stories, maybe some of them will decide they want to become authors, writing stories for the rest of us, too!   

Charge cable進入發燒排行的影片

#JaybirdVista #Logitech
真無線 #運動耳機,6g 的超輕巧機身、IPX7 防水, 6 小時的續航力
(6小時播放時間、快充5分鐘,即可獲得1小時電量、單側耳機模式、簡約設計,舒適配戴、全防汗防水認證)
#防水耳機 #UNBOXING #開箱 #試玩
Jaybird Vista 真*無線 True Wireless Bluetooth In-Ear Earphone Headphone

Jaybird 最新一款#真無線耳機 Vista。這款新品最大的特性就是 藍牙5.0 (Wireless Bluetooth Version 5.0), 輕巧,不連耳膠的耳機本體僅重 6 克,耳機連充電盒整套的重量也不過是 45 克,配合耳機和充電盒的纖巧設計,更適合輕裝帶去做運動。

規格上,Jaybird Vista 是款有 IPX7 防水認證的真・無線耳機,內建 6 小時續航力的電池,充電盒可以增加 10 小時播放時間。Vista 是用了被稱為膠囊式設計,是把內建鯺翼的耳膠弄成一體化形狀,盡量覆蓋到耳機本體會接觸到皮膚、汗水的部分,讓耳機更耐用。

做為真・無線耳機,Jaybird Vista 自然會有專屬的手機 app,可以用於調整 EQ,更妙的還會有最後使用的定位,讓使用者有更大機會可以找回遺落的耳機。

Specifications:
Bluetooth version: 5.0
Driver size: 6 mm
Response Bandwidth 20Hz - 20kHz
Profiles: Handsfree , Headset , A2DP , AVCRP , SPP
Wireless Range: Class 2 standard range 10m/33ft
Play Time: 6 Hrs* + 10 Hrs in the case
Charging time: 2 Hrs
Quick charge: 5 min = 1 hour playtime
Charging: Via charge case with USB connector
Weight with medium eargel: 6g

In the Box
Vista Totally Wireless Sport Headphones
Secure-Fit Eargels: 1/2/3
Charge Case
USB C Charging Cable
Logitech 旗下的運動耳機品牌 Jaybird,今天在香港發佈最新一款真・無線耳機 Vista。這款新品最大的特性就是輕巧,不連耳膠的耳機本體僅重 6 克,耳機連充電盒整套的重量也不過是 45 克,配合耳機和充電盒的纖巧設計,更適合輕裝帶去做運動。
規格上,Jaybird Vista 是款有 IPX7 防水認證的真・無線耳機,內建 6 小時續航力的電池,充電盒可以增加 10 小時播放時間。Vista 是用了被稱為膠囊式設計,是把內建鯺翼的耳膠弄成一體化形狀,盡量覆蓋到耳機本體會接觸到皮膚、汗水的部分,讓耳機更耐用。
做為真・無線耳機,Jaybird Vista 自然會有專屬的手機 app,可以用於調整 EQ,更妙的還會有最後使用的定位,讓使用者有更大機會可以找回遺落的耳機。
查詢:Compucon(3996 9624)
https://www.price.com.hk/product.php?p=420176

在動態和瞬態操作下評估微電網的電池儲 能和太陽能發電源的可靠度

為了解決Charge cable的問題,作者範氏庄 這樣論述:

微電網主要是提供本地負載供電,其中包含分佈式發電機和儲能係統。分佈式發電機主要來源為可再生能源,例如太陽能發電系統、風力渦輪機發電系統。聚合電池儲能系統為具有多個電池儲能裝置的聚合系統,為常被使用以提高微電網中可再生能源供電的可靠度。聚合電池儲能系統用於控制源負載功率平衡,使微電網能夠以高穩定性和可靠度操作,為不同的客戶供電。為了展示聚合電池儲能系統在微電網中的重要性,本研究的第一個貢獻是分析在微電網不同動態操作情況下聚合電池儲能系統的可靠度性能。具體而言,本研究利用馬可夫模型的分析方法以評估整個聚合電池儲能系統的操作可靠性。除聚合電池儲能系統外,關鍵組件的使用時間相關故障率、電壓波動和功率

損耗相關故障率 (VF-PL DFR) 諸如雙向直流/交流,直流/直流轉換器、直流/交流逆變器、開關和保護裝置、電池模塊和電池充電器/控制器等也被制定並納入可靠度評估。根據聚合電池儲能系統和光伏 (PV) 發電系統的微電網的不同動態操作情況,聚合電池儲能系統的功率損耗相關故障率可能會受到不同的影響。本研究分析了微電網隨機動態操作場景,包括:負載功率變化、光伏電源間歇不穩定運行、微電網並網和離網操作模式、聚合電池儲能系統的充放電狀態。模擬測試結果被提出和討論,以驗證微電網中 聚合電池儲能系統 的操作可靠度在很大程度上取決於其不同的動態操作策略以及施加的電壓過應力。另一方面,直流(直流)微電網是一

種新興技術,可有效利用光伏發電系統和電池儲能係統等直流電源。在直流微電網的離網(或孤島)模式下,可再生能源的操作,例如 光伏發電系統和儲能係統應得到更多關注,使直流微電網能夠滿足各種負載需求的供電連續性,調度可再生能源的間歇輸出功率,並應對故障類型。這些可能會導致 可再生能源和能源儲存系統的性能可靠性降低。因此,本文的第二個貢獻是在動態和瞬態操作考慮下對孤島直流微電網的光伏發電系統進行可靠度分析。目的是闡明離網直流微電網中光伏發電系統的動態電壓變化故障率和故障電流變化故障率的計算。動態電壓變化故障率主要取決於動態操作條件,例如光伏功率波動和負載功率變化,而 故障電流變化故障率 表示由於直流微電

網的瞬態操作條件(例如極對極和極對接地故障。然後綜合考慮使用的時變故障率、功率損耗和溫度相關故障率、動態電壓變化故障率 和故障電流變化故障率 來評估孤島直流微電網中光伏發電源的系統級和組件級可靠性。馬爾可夫狀態轉移圖和察普曼-科莫高洛夫方程式被推導出並應用於光伏系統可靠度評估。實驗結果表明,光伏發電系統直流-直流功率變換器的可靠度指標受孤島直流微電網的動態和暫態操作影響最大。此外,光伏系統的 動態電壓變化故障率 大多小於其 故障電流變化故障率,但由於這些情況在孤島直流微電網中更頻繁地重複出現,光伏發電機組的系統級可靠度會因動態情況而顯著降低。此外,由於直流 微電網 的動態和瞬態操作,光伏發電系

統的平均故障時間和平均故障間隔時間可能會顯著降低。基於光伏電池的直流微電網通常在農村/當地能源社區中以離網/孤島模式操作。對於這種離網操作模式,直流微電網頻繁重複的動態操作場景會降低光伏系統和電池儲能係統中功率轉換器的可靠度如光伏系統的間歇輸出功率,負載功率的隨機波動。事實上,離網直流微電網光伏發電系統和負載系統的動態操作會導致電池能源儲存系統雙向功率變換器的可靠度有所下降,因為電池儲能電源承受不同的充電/放電水平 提供適當的源負載功率平衡。此外,離網直流微電網的瞬態操作場景會顯著影響光伏系統和 電池能源儲存系統 功率轉換器的可靠性。為了使上述假設更清楚,本論文的第三個貢獻是在當地能源社區動態

和瞬態操作考慮下,對基於離網光伏電池的直流微電網中的總功率轉換單元進行了可靠度分析。總功率轉換單元 包含光伏發電系統的升壓轉換器、電池能源儲存系統 的雙向轉換器和直流負載系統的降壓轉換器。主要目的是提供解釋在離網直流微電網中分別從動態和瞬態操作條件計算 總功率轉換單元 的動態電壓相關故障率和故障電流相關故障率。然後,結合有用時間相關故障率、動態電壓變化故障率和故障電流相關故障率 來評估直流微電網中 總功率轉換單元 的系統級和組件級可靠度。馬爾可夫狀態轉移圖應用於 總功率轉換單元 的可靠性評估。實驗結果表明,與 總功率轉換單元 中的升壓或降壓轉換器相比,雙向功率轉換器的可靠度受動態和瞬態操作的影

響更大。此外,總功率轉換單元 的 動態電壓變化故障率 幾乎小於其 故障電流相關故障率,但是由於在孤島直流微電網中更頻繁地重複這些情況,動態功率變化情況可能會顯著降低 總功率轉換單元 的系統級可靠度。總功率轉換單元的平均失效前時間和平均失效間隔時間 值可能會因離網直流微電網的動態和瞬態操作而顯著降低。

The Book of Broken Promises: 400 Billion Broadband Scandal & Free the Net

為了解決Charge cable的問題,作者Kushnick, Bruce 這樣論述:

With the FCC's Net Neutrality decision, (and the legal challenges to follow), The Book of Broken Promises emerges to expose the sad truth about communications services in the U.S and delivers a fact-based history of broadband in America that you were never told about. The third book in a trilogy

spanning 17 years, senior telecom analyst and industry insider Bruce Kushnick lays out, in all of the gory details, how America paid over $400 billion and counting, to be the first fully fiber optic-based nation yet ended up 27th in the world for high-speed Internet. While over four million people f

iled with the FCC to 'Free the Net', one thing is abundantly clear- You know something is terribly wrong. Every time you pay your bills you notice that the price of your services keeps going up, you don't have a serious choice for Internet (ISP), broadband or cable service, or maybe you can't even g

et very fast broadband service. Broken Promises is not just about broadband, Net Neutrality, or some cautionary tale. It reveals new damaging facts about the underbelly of our communications providers, AT&T and Verizon, not to mention the cable companies, and why it's time to restructure communi

cations if we want the future we paid for. Most importantly, Broken Promises answers a fundamental question: How did we get into this mess and what can we do to fix it today? And don't worry; all of this jargon will be explained in plain English. First, Broken Promises thoroughly documents the failu

re to upgrade America's networks. Starting in the 1990's, the companies asked state regulators to grant rate increases and tax perks to pay for replacing the existing, utility copper wires connected to homes and offices, (and schools and libraries), with a fabulous fiber optic future. Though it vari

es by state, by 2014, over $400 billion was collected, charging you thousands of dollars for services you never got. Alongside this, in 1995, the cable companies cut a deal with the FCC called the "Social Contract" to charge customers for network upgrades and the wiring of schools. While the Contrac

t expired in 2001, the companies never stopped billing and collected about $50 billion extra and there's no evidence that the schools were wired. And we were all charged about 9 times to wire America's schools & libraries. Adding insult to injury, Congress passed the Telecom Act of 1996, opening

the networks to give customers a choice of ISPs and even cable providers. But, by 2005, the FCC reversed this 'right', creating Net Neutrality issues. Also, the FCC allowed the companies to consolidate power, leaving a trail of broken promises from the mergers that created AT&T, Verizon and Cen

turylink. Broken Promises also details what to expect from the AT&T-DirecTV and Comcast-TWC mergers. In order to keep control, the companies have an army of fake consumer groups (astroturf), paid-off politicians, corporate-funded stink tanks, co-opted non-profits, all coordinated by massive skun

kworks networks that use disinformation campaigns. Broken Promises pulls back the curtain and also shines the spotlight on the ALEC/Corporate sponsored deregulation bills from hell and how this game is played. Broken Promises explains all the 'buzzwords' and supplies encyclopedic coverage- everythin

g you need to know about the current, critical issues, from Net Neutrality, something called "Title II" and "reclassification", the "IP transition", the secret 'special access' connections, the rise of municipalities who didn't wait to get wired-or the plan to 'shut off the copper'. Broken Promises

ends with a proactive plan to reclaim our rights and restructure communications by leveraging the companies' broadband commitments and business practices to bring America's states and cities very high speed, fiber optic-based utilities that lowers your rates and delivers choices via "Open Network" c

ompetition for all services. Isn't it time everyone got the fiber optic futur

基於石墨烯及生物碳基材料的可撓式電晶體應用與能量攫取

為了解決Charge cable的問題,作者Mamina Sahoo 這樣論述:

Table of ContentsAbstract.......................................................................................................iFigure Captions........................................................................................xiTable Captions...................................................

....................................xxiChapter 1: Introduction1.1 Flexible electronics................................................................................11.2 Graphene the magical material ………………………….……….......21.2.1 Synthesis of graphene…………………………….….…...21.2.1.1 Mechanical exfoliati

on of graphene………………...……21.2.1.2 Epitaxial growth on Sic substrate………………….…..31.2.1.3 Chemical vapor deposition (CVD) method………….…..41.2.2 Graphene transfer…………………………………………....41.3 Application of graphene based Electronics……………………….......51.3.1 Graphene based flexible transparent electrode

……………….61.3.2 Top gated Graphene field effect transistor…………………….71.4 Challenges of flexible graphene based field effect transistors.……….91.5 Energy harvesting devices for flexible electronics………….........….91.6 Solar cell…………………………………………………………...101.6.1 Device architecture…………………………………………101.

6.2 Issues and Challenges of Perovskite solar cells………...121.7 Triboelectric nanogenerator (TENG)………………………………121.7.1 Working mode of TENG………………………………….141.8 Applications of TENG………………………………………………151.8.1 Applications of graphene based TENG…………………....151.8.2 Applications of bio-waste material ba

sed TENG………….171.9 Key challenges of triboelectric nanogenerator…………………....…191.10 Objective and scope of this study………………………………....19Chapter 2: Flexible graphene field effect transistor with fluorinated graphene as gate dielectric2.1 Introduction………………………………………………………....212.2 Material preparation a

nd Device fabrication………………. 232.2.1CVD Growth of Graphene on Copper Foil………………….232.2.2 Transfer of graphene over PET substrate……………...........252.2.3 Fabrication of fluorinated graphene ……………...........252.2.4 F-GFETs with FG as gate dielectric device fabrication……262.2.5 Material and electrical C

haracterization …………………272.3 Results and discussion…………………………………………….282.3.1 Material characterization of PG and FG……………...…...….282.3.2 Electrical characterization of F-GFET with FG as dielectrics..332.3.3 Mechanical stability test of F-GFET with FG as dielectrics ….362.4 Summary…………………………………………………

………....40Chapter 3: Robust sandwiched fluorinated graphene for highly reliable flexible electronics3.1 Introduction………………………………………………………….423.2 Material preparation and Device fabrication ………………….........443.2.1 CVD Growth of Graphene on Copper Foil…………………...443.2.2 Graphene fluorination …...…….…………

…………..............443.2.3 F-GFETs with sandwiched FG device fabrication....................443.2.4 Material and electrical Characterization…..............................453.3 Results and discussion ……………………………………...............453.3.1 Material characterization of sandwiched…………………….453.3.2 Electric

al characterization of F-GFET with sandwiched FG....473.3.3 Mechanical stability test of F-GFET with sandwiched FG…503.3.4 Strain transfer mechanism of sandwiched FG………………513.4 Summary…………………………………………………………....53Chapter 4: Functionalized fluorinated graphene as a novel hole transporting layer for ef

ficient inverted perovskite solar cells4.1 Introduction………………………………………………………….544.2 Material preparation and Device fabrication......................................564.2.1 Materials ………………………...…………………………564.2.2 CVD-Graphene growth ……………………………...…...564.2.3 Graphene fluorination …………………………………….564.

2.4 Transfer of fluorinated graphene…………………………...574.2.5 Device fabrication …………………………………….….574.2.6 Material and electrical Characterization …….....................584.3 Results and discussion …………………………………………….594.3.1 Surface electronic and optical properties of FGr……….….594.3.2 Characterization o

f FGr and perovskite surface ……….…644.3.3 Electrical performance of PSC………………….…….…...694.3.4 Electrical performance of Flexible PSC……………………724.4 Summary…………………………………………………………...78Chapter 5: Flexible layered-graphene charge modulation for highly stable triboelectric nanogenerator5.1 Introduction…………

…………………………………………....795.2 Experimental Section……………………………………………….825.2.1 Large-area graphene growth ……………………………….825.2.2 Fabrication of Al2O3 as the CTL …………………………...825.2.3 Fabrication of a Gr-TENG with Al2O3 as the CTL………825.2.4 Material characterization and electrical measurements…….835.3 Results

and discussion.…………………………………...…………845.3.1 Material Characterization of Graphene Layers/Al2O3……845.3.2 Working Mechanism of Gr-TENG with Al2O3 as CTL…915.3.3 Electrical Characterization of Gr-TENG with Al2O3 CTL…945.3.4 Applications of the Gr-TENG with Al2O3 as CTL……….1015.4 Summary…………………………………………

……………….103Chapter 6: Eco-friendly Spent coffee ground bio-TENG for high performance flexible energy harvester6.1 Introduction…………………………………………………….......1046.2 Experimental Section…………………………………………….1086.2.1 Material Preparation …………………………………….1086.2.2 Fabrication of SCG powder based TENG………………...1086

.2.3 Fabrication of SCG thin-film based TENG ………………1096.2.4 Material characterization and electrical measurements….1106.3 Results and discussion.…………………………………...………1116.3.1 Material Characterization of SCG powder and thin film….1116.3.2 Working Mechanism of SCG-TENG……………………...1186.3.3 Electrical Cha

racterization of SCG-TENG……………….1226.3.4 Applications of the SCG thin-film based TENG………….1326.4 Summary………………………………………………………….134Chapter 7: Conclusions and future perspectives7.1 Conclusion………………………………………………………....1357.2 Future work …………………………….………………………….1377.2.1 Overview of flexible fluorinated g

raphene TENG..............1377.2.1.1 Initial results………………………………….…1387.2.2.1.1 Fabrication of FG-TENG………………1387.2.2.1.2 Working principle of FG-TENG……….1397.2.2.1.3 Electrical output of FG-TENG.………...140References…………………………………………………………….142Appendix A: List of publications………………….……………..........177A

ppendix B: Fabrication process of GFETs with fluorinated graphene (FG) as gate dielectric……........……………………………………….179Appendix C: Fabrication process of GFETs with sandwiched FG…....180Appendix D: Fabrication process of inverted perovskite solar cell with FGr as HTL…………………………………………………………….181Appendi

x E: Fabrication of a Gr-TENG with Al2O3 as the CTL…….182Appendix F: Fabrication of SCG based triboelectric nanogenerator….183Figure captionsFigure 1-1 Exfoliated graphene on SiO2/Si wafer……………………….3Figure 1-2 Epitaxial graphene growth on SiC substrate………………....3Figure 1-3 Growth mechanism of graphe

ne on Cu foil by CVD ……......4Figure 1-4 Wet transfer process of CVD grown graphene…………...….5Figure 1-5 RGO/PET based electrodes as a flexible touch screen.……....6Figure 1-6 Graphene based (a) touch panel (b) touch-screen phone…….7Figure 1-7 Flexible graphene transistors (a) (Top) Optical photograph

of an array of flexible, self-aligned GFETs on PET. (Bottom) The corresponding schematic shows a device layout. (b) Schematic cross-sectional and top views of top-gated graphene flake–based gigahertz transistors. (Left) AFM image of a graphene flake. (Right) Photograph of flexible graphene devices

fabricated on a PI substrate. (c) Cross-sectional schematic of flexible GFETs fabricated using a self-aligned process……8Figure 1-8 The magnitude of power needed for meet certain operation depending critically on the scale and applications………………………10Figure 1-9 Schematic diagrams of PSC in the (a) n-i

-p mesoscopic, (b) n-i-p planar, (c) p-i-n planar, and (d) p-i-n mesoscopic structures………...12Figure 1-10 Schematic illustration of the first TENG...………………...13Figure 1-11 Working modes of the TENG. (a) The vertical contact-separation mode. (b) The lateral sliding mode. (c) The single-electrode mode

. (d) The free-standing mode ………………………………...……14Figure 1-12 Schematic illustration of (a) device fabrication of graphene-based TENGs (b) graphene/EVA/PET-based triboelectric nanogenerators (c) device fabrication of stretchable CG based TENG with electrical output performance……………………………………………………...17

Figure 1-13 Schematic illustration and output performance of bio-waste material based TENG (a) Rice-husk (b) Tea leaves (c) Sun flower powder (SFP) (d) Wheat stalk based TENG………….…………………………18Figure 2-1 Graphene synthesis by LPCVD method……….…………...24Figure 2-2 Schematic diagram of (a) preparation pro

cess of 1L-FG/copper foil (b) Layer by layer assembly method was used for fabricating three-layer graphene over copper foil and then CF4 plasma treatment from top side to form 3L-FG/copper foil…………………….26Figure 2-3 Schematic illustration of fabrication process of F-GFET with FG as gate dielectric ……

……………………………………………….27Figure 2-4 (a) Raman spectra of PG, 1L-FG and 3L-FG after 30 min of CF4 plasma treatment over copper foil. (b) Peak intensities ratio ID/IG and optical transmittance of PG, 1L-FG and 3L-FG. Inset: image of PG and 1L-FG film over PET substrate. (c) Typical Raman spectra of PG, 1L

-FG and 3L-FG on PET substrate. (d) Optical transmittance of PG, 1L-FG and 3L-FG film over PET substrate. The inset shows the optical image of GFETs with FG as gate dielectrics on PET ……….…………30Figure 2-5 XPS analysis result of (a) PG (b) 1L-FG (c) 3L-FG where the C1s core level and several carbon f

luorine components are labeled. The inset shows the fluorine peak (F 1s) at 688.5 eV……………………….32Figure 2-6 (a) Water contact angle of PG, 1L-FG and 3L-FG over PET substrate. (b) The relationship between water contact angle of PG, 1L-FG and 3L-FG and surface-roughness………………………………………33Figure 2-7 (a) I

d vs. Vd of w/o-FG, w/1L-FG and w/3L-FG samples after 30 min of CF4 plasma (b) Id vs. Vg of w/o-FG, w/1L-FG and w/3L-FG samples at a fixed value of drain to source voltage, Vds of 0.5 V (c) Gate capacitance of w/o-FG, w/1L-FG and w/3L-FG samples (d) Gate leakage current of w/o-FG (naturally formed A

l2OX as gate dielectric), w/1L-FG and w/3L-FG samples ……………………………...…………...……...34Figure 2-8 (a) Schematic illustration of bending measurement setup at different bending radius. (i) Device measurement at (i) flat condition (ii) bending radius of 10 mm (iii) 8 mm (iv) 6 mm. Inset shows the photograph

of measurement setup. Change in (b) carrier mobility (c) ION of w/o-FG, w/1L-FG and w/3L-FG samples as a function of bending radius. The symbol ∞ represents the flat condition. Change in (d) carrier mobility (e) ION of w/o-FG, w/1L-FG and w/3L-FG samples as a function of bending cycles (Strain = 1.

56%)…………………………………….38Figure 3-1 Schematic illustration of the flexible top gate graphene field effect transistor with sandwich fluorinated graphene (FG as gate dielectric and substrate passivation layer) ……………………………...…………44Figure 3-2 Raman spectra of (a) PG/PET and PG/FG/PET substrate (b) sandwiche

d FG (FG/PG/FG/PET). Inset showing the optical transmittance of sandwiched FG. (c) HRTEM image for 1L-FG.……………….….…46Figure 3-3 (a) Id vs. Vd of FG/PG/FG device at variable vg (−2 to 2 V). (b) Id vs. Vg of FG/PG/FG. (c) Gate capacitance of FG/PG/FG ….…….48Figure 3-4 Raman spectra of devices under be

nding (a) PG/PET (Inset shows the 2D peak) (b) PG/FG/PET (inset shows the 2D peak) …….…49Figure 3-5 (a) Change in Mobility (b) change in ION of PG/PET and PG/FG/PET as a function of bending radius between bending radii of ∞ to 1.6 mm in tensile mode (c) Change in Mobility (d) Change in ION of PG/PET

and PG/FG/PET as a function of bending cycles. Inset of (c) shows the photograph of F-GFETs with sandwich FG on the PET substrate (e) change in resistance of w/1L-FG, 1L-FG/PG/1L-FG samples as a function of bending radius ………………………...……………….50Figure 3-6 Schematic evolution of proposed strain transf

er mechanism through PG/PET and PG/FG/PET. The inset of PG/PET sample shows the generation of sliding charge due to interfacial sliding between PG and PET ………………………………………………………………….….52Figure 4-1 FGr fabrication and transfer process …………….………....57Figure 4-2 (a) Raman analysis of pristine graphene a

nd the FGr samples after 5, 10, 20, and 30 min of CF4 plasma treatment over Cu foil (b) Raman intensity ratios (I2D/IG and ID/IG) of fluorinated graphene, with respect to the exposure time ……………………………………………60Figure 4-3 SEM images of (a) ITO, (b) ITO/1L-FGr, (c) ITO/2L-FGr, and (d) ITO/3L-FGr …………………

………………………………….61Figure 4-4 XPS analysis of FGr with (a) 5 min (b) 10 min and (c) 20 min of CF4 plasma treatment on the Cu foil (d) The fluorine peak (F1s) of FGr (f) The correlation of the carbon-to-fluorine fraction (C/F) with exposure time and the corresponding carrier concentrations …………….………62Fi

gure 4-5 Tauc plots and UV–Vis absorption spectra of FGr films with CF4 plasma treatment for (a) 5, (b) 10, and (c) 20 min ….………......….63Figure 4-6 WCAs on PEDOT: PSS and 1L, 2L, and 3L FGr samples ...64Figure 4-7 (a) Mechanism of large grain growth of perovskite on a non-wetting surface (b) Top-vi

ew and cross-sectional surface morphologies of perovskites on various HTLs ………………………………...…………65Figure 4-8 XRD of perovskite films on various HTL substrates ….…...66Figure 4-9 UPS spectra of various numbers of FGr layers on ITO: (a) cut-off and (b) valance band spectra …………………………………….….67Figure 4-10

Energy band diagrams of PSCs with (a) PEDOT: PSS, (b) 1L-FGr, (c) 2L-FGr, and (d) 3L-FGr as HTL …………………….…….68Figure 4-11 (a) Steady state PL spectra of PEDOT: PSS/perovskite and FGr/perovskite films. (b) TRPL spectral decay of PEDOT: PSS/perovskite and FGr/perovskite films………………………….……69Figure 4-1

2 (a) Schematic representation of a PSC having an inverted device configuration. (b) Cross-sectional HRTEM image of the ITO/ FGr–perovskite interface………………………………………...………70Figure 4-13 Photovoltaic parameters of PSCs incorporating various HTL substrates: (a) PCE (%), (b) Voc (V), (c) Jsc (mA/cm2), an

d (d) FF (%)....71Figure 4-14 Normalized PCEs of target and control PSCs incorporating various HTL substrates, measured in a N2-filled glove box. (a) Thermal stability at 60 °C (b) Light soaking effect under 1 Sun (c) Stability after several days …………………………………………………………….72Figure 4-15 (a) Schematic r

epresentation of the structure of a flexible PSC on a PET substrate (b) J–V curves of control and target flexible PSCs, measured under both forward and reverse biases. (c) Average PCE of flexible PSCs incorporating PEDOT: PSS and FGr HTLs……….…73Figure 4-16 (a) Normalized averaged PCEs of the flexibl

e PSCs after bending for 10 cycles at various bending radii. (b) Normalized averaged PCEs of the flexible PSCs plotted with respect to the number of bending cycles at a radius of 6 mm ………………………………………………75Figure 4-17 Photovoltaics parameters of flexible PSCs with various HTL substrates: (a) JSC (mA/c

m2), (b) Voc (V), and (c) FF (%) ……………....75Figure 4-18 XRD patterns of perovskite films on PET/ITO/FGr, recorded before and after bending 500 times …………………………………….76Figure 4-19 SEM images of (a) perovskite films/FGr/ITO/PET before bending (b) after bending 500 times (c) perovskite films/PEDOT: PSS/

ITO/PET before bending (d) after bending 500 times ……………….…77Figure 4-20 PL spectra of perovskite films on PET/ITO/FGr, recorded before and after various bending cycles …………………………….…78Figure 5-1 Schematic illustration showing the fabrication process of a flexible Gr-TENG with Al2O3 as the CTL ……………

………………...83Figure 5-2 The Raman spectra of (a) graphene/Al-foil/PET and (b) graphene/Al2O3/Al-foil/PET. The I2D/IG of graphene layers (1L, 3L and 5L) over (c) Al-foil/PET substrate (d) Al2O3/Al-foil/PET substrate …...85Figure 5-3 XRD patterns of (a) graphene/Al-foil/PET and (b) graphene/Al2O3/Al-foi

l/PET ……………………………………………86Figure 5-4 FESEM image of the graphene surface on (a) Al-foil/PET and (b) Al2O3/Al-foil/PET. EDS analysis of (c) graphene/Al-foil/PET and (d) graphene/Al2O3/Al-foil/PET (e) EDS elemental mapping of the graphene/Al2O3/Al-foil/PET presenting C K series, O K series and Al K ser

ies …………………………………………………………….………87Figure 5-5 3D AFM images of (a) 1L-Gr (b) 3L-Gr (c) 5L-Gr on Al foil (d) 1L-Gr (e) 3L-Gr (f) 5L-Gr on Al2O3/Al foil………………….….….89Figure 5-6 Work function of graphene layers on the (a) Al-foil (b) Al2O3/Al-foil substrate by KPFM. Inset showing the surface potential of

graphene layers (1L, 3L and 5L) over Al-foil and Al2O3 substrate (c) energy band diagrams for 1L-Gr, 3L-Gr and 5L-Gr over Al2O3 ……....90Figure 5-7 Schematic illustration of Electronic energy levels of graphene samples and AFM tip without and with electrical contact for three cases: (i) tip and the

1L-Gr (ii) tip and the 3L-Gr and (iii) tip and the 5L-Gr over Al2O3/Al foil/PET……………………………………….…...…………91Figure 5-8 Working mechanism of Gr-TENG with Al2O3 ….….…...…93Figure 5-9 a) ISC and (b) VOC of 1L-, 3L- and 5L-Gr-TENGs without Al2O3 CTL (c) Sheet resistance of graphene as a function of number

of layers ………………………………...…...…………………………….95Figure 5-10 Electrical output of the Gr-TENG with Al2O3 CTL: (a) ISC and (b) VOC of 1L-, 3L- and 5L-Gr. Magnification of the (c) ISC and (d) VOC of the 3L-Gr-TENG with Al2O3 as the CTL. Average mean (e) ISC and (f) VOC generated by pristine Gr-TENGs (1L, 3L

and 5L) and Gr-TENGs (1L, 3L and 5L) with Al2O3 CTL. Error bars indicate standard deviations for 4 sets of data points ……………...…………….….…......96Figure 5-11 (a) CV of Al/Al2O3/3L-Gr/Al at 100 kHz and 1 MHz (b) CV hysteresis of 3L-Gr-TENG with Al2O3 as CTL with different sweeping voltages (c) Surface

charge density of graphene (1L, 3L and 5L)-based TENG with and without Al2O3 as CTL ………………………………...98Figure 5-12 Circuit diagram of output (a) VOC and (b) ISC measurement of 3L-Gr TENG with Al2O3 CTL as a function of different resistors as external loads. Variation in VOC and ISC w.r.t different re

sistors as external loads of (c) 3L-Gr TENG with Al2O3 CTL (d) 3L-Gr TENG without Al2O3 CTL. Relationship between electrical output power and external loading resistance (e) 3L-Gr TENG with Al2O3 CTL (f) 3L-Gr TENG without Al2O3 CTL…………………………………….………………...99Figure 5-13 (a)Electrical stability and du

rability of the 3L-Gr TENG with Al2O3 (b) Schematic illustrations showing the charge-trapping mechanism of 3L-Gr-TENG without and with Al2O3 charge trapping layer ………101Figure 5-14 (a) Photograph showing 20 LEDs being powered (b) Circuit diagram of bridge rectifier (c) Charging curves of capacitors

with various capacitances (d) Photograph of powering a timer …….………………102Figure 6-1 The schematic diagram of the fabrication process for SCG powder based TENG ……………………………………………….….108Figure 6-2 The schematic diagram of the fabrication process for SCG thin-film based TENG via thermal evaporation meth

od ………………109Figure 6-3 FESEM image of (a) SCG powder (inset image illustrates the high magnification of SCG powder) (b) SCG thin-film/Al foil/PET (inset image illustrates the high magnification of SCG thin-film). EDS of the (c) SCG powder (d) SCG thin-film/Al foil/PET…………………………. 112Figure 6-4 Raman

spectra analysis (a) pristine SCG powder (b) SCG thin-film/Al foil/PET. XRD patterns of (c) SCG powder (d) SCG thin film with different thickness ……………………………………… ……….115Figure 6-5 FTIR analysis of the (a) pristine SCG powder sample (b) SCG thin film………………………………………………………………...116Figure 6-6 3D AFM ima

ge of SCG thin-film with various thickness (a) 50 nm (b)100 nm and (c) 200 nm……………………………………...117Figure 6-7 Schematic illustration of working principle of SCG thin-film based TENG …………………………………………………………...119Figure 6-8 Finite element simulation of the generated voltage difference for SCG thin-film b

ased TENG based on the contact and separation between SCG thin film and PTFE …………….……………………….120Figure 6-9 (a) The setup for electrical property testing, which including a Keithley 6514 system electrometer and linear motor. Electrical output (b) ISC (c) VOC of TENGs based on different friction pairs

for checking the triboelectric polarity of SCG…………………………………………...123Figure 6-10 Electrical measurement of (a) ISC and (b) VOC of the SCG thin-film based TENG. Mean value of (d) ISC (e) VOC and (f) Output power density of the pristine SCG powder and thermal deposited SCG thin-film based TENG. ...………

………………………………………125Figure 6-11 (a) Schematic illustration of KPFM for measuring the work function. (b) Surface potential images of SCG thin film with various thickness (50 nm, 100 nm and 200 nm). (c) Surface potential and (d) Work function vs SCG thin film with various thickness (50 nm, 100 nm and 20

0 nm).………….……………………………………………….128Figure 6-12 (a) Isc and (b) Voc of SCG thin film based TENG under different contact frequencies (c) Isc and (d) Voc of SCG thin film based TENG under different separation distance…………………………….129Figure 6-13 Electrical response (a) ISC (b) VOC of pristine SCG powder an

d (c) ISC (d) VOC of SCG thin-film based TENG with respect to different relative humidity (35-85% RH) …………………………….131Figure 6-14 Electrical stability and durability test of the output performance of (a) pristine SCG powder based TENG (b) SCG thin-film based TENG……………………………………………………………132Figure 6-15

Applications of the SCG thin film based TENG as a power supply: (a) Circuit diagram of the bridge-rectifier for charging a capacitor (b) Charging curves of capacitors with various capacitances (0.1, 2.2 and 3.3 µF) (c) Photograph of powering a timer…………………...………133Figure 7-1 Schematic illustration o

f FG based TENG…….….……….139Figure 7-2 Working mechanism of FG based TENG…………………140Figure 7-3 Electrical output of FG-TENG: (a) Isc and (b) Voc …….….141Table captionsTable 2-1 Comparison of flexible G-FETs on/off ratio of our work with other’s work…………………………………………………...………...40Table 3-1 Summary of th

e electrical and mechanical performance of flexible w/o-FG, w/ 1L-FG, w/3L-FG and sandwich FG (FG/PG/FG) samples......................................................................................................52Table 3.2: Comparison of the electrical and mechanical performance of sandwich FG ba

sed F-GFET with previous F-GFET with different gate dielectrics……………………………………………………….………53Table 4-1 Best photovoltaic performance from control and target devices prepared on rigid and flexible substrates……………………………......74Table 5-1 EDS elemental analysis of graphene over Al-foil/PET and Al2O3/Al-foi

l/PET ………………………………………………………88Table 5-2 Comparison of electrical output performance of Gr-TENGs with and without Al2O3 CTL samples used in this study………………103Table 6-1 EDS elemental analysis of SCG-Powder and SCG thin film /Al foil/PET………………………………………………………………...113Table 6-2 Comparison of electrical o

utput performance of SCG-TENGs samples used in this study……………………………………………...126