CV24 混合比的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列各種有用的問答集和懶人包

CV24 混合比的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦增井敏克(MASUITOSHIKATSU)寫的 圖解 IT基本力:256個資訊科技關鍵字全圖解 和高鵬的 電化學基礎教程(第二版)都 可以從中找到所需的評價。

這兩本書分別來自商周出版 和化學工業所出版 。

國立嘉義大學 農業科學博士學位學程 黃光亮、艾群所指導 蔡竣宇的 LED光質和溫室披覆材料對萵苣生長之影響 (2021),提出CV24 混合比關鍵因素是什麼,來自於萵苣(Lactuca sativa L.)、光質、光合作用效率、硝酸鹽、電功率消耗。

而第二篇論文中原大學 化學工程研究所 劉偉仁所指導 曾子芯的 利用電漿輔助化學沉積提升鋰離子電池中富鎳三元正極材料電化學性能之應用 (2021),提出因為有 鋰離子電池、富鎳三元正極材料、電漿改質、濺鍍、TiN 披覆、TiO2 披覆的重點而找出了 CV24 混合比的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了CV24 混合比,大家也想知道這些:

圖解 IT基本力:256個資訊科技關鍵字全圖解

為了解決CV24 混合比的問題,作者增井敏克(MASUITOSHIKATSU) 這樣論述:

你知道UI、UX、CMS、SEO是什麼嗎? 你分的清AR、VR、MR之間的差別嗎? 零基礎也能立即上手,嚴選256個IT關鍵字全圖解 ★日本亞馬遜網路書店「電腦類」銷售排行榜 第一名★ ★日本亞馬遜網路書店4星好評!★ 從RPA、IoT、FinTech,到AR、VR、MR。 本書蒐羅256個精選IT相關術語, 包含七大領域: 新聞中常見的IT術語、易混淆的IT術語組合、資訊安全用語、網站設計與社群軟體營運用語、 商業會談中經常使用的IT業界用語、IT業界基本用語及不可不知的IT業界大人物。 完整涵蓋了IT的基礎面向, 並以淺顯易懂的圖像及文字詳盡說明,讓看來高不可攀的I

T變得平易近人。 這是一本有系統而清楚地帶領讀者了解「IT」相關術語的書。 利用圖像與文字深入淺出說明, 讓對IT毫無概念的人也能毫無窒礙地閱讀,輕鬆吸收相關知識。 除了每頁附有相關術語解說外, 後方更附有索引,方便讀者查閱。 同時也可兼作IT辭典使用,是極為實用的IT參考書籍。 ▌好評推薦 ▌ 科技課綱研修委員 呂添仁 台灣科技大學管理學院老師 蕭培元 (以上依姓氏筆畫排序) ▌本書特色 ▌ 1.分類清楚,架構明確。 2.收錄256個精選IT關鍵字。 3.搭配生動圖解,易於理解閱讀。 4.索引+參考頁數提醒,簡明實用。

CV24 混合比進入發燒排行的影片

伊吹童子。
於近江伊吹山麓有著「酒吞童子」的別名。
不屬於天然或自然的出生,換言之即是以鬼之子出生的伊吹童子,在山中長大成人,最終
獲得了令人畏懼的超凡之力。

據說當她住進大江山後,成為了在京城內享受殺戮與豪奪的酒吞童子───

身高/體重:
第一階段:133cm(全長200cm)‧??kg
第二階段:180cm(戰鬥時300cm)‧??kg
出處:「酒吞童子繪卷」,御伽草子等等
地區:日本
屬性:混沌‧善
性別:女性
身為反英雄「酒吞童子」的另一側面,神靈。

身為「神/KAMI」的性質濃厚,作為自然(世界)的一部份,自我意識極強。
會依循原始的慾望而行動。
絲毫沒有與人類及其文化‧文明接觸的念頭。
雖然擺出一副不懂酒精的刺激感,不懂人命的美味,不受一時的瘋狂而沉溺於享樂之中的
樣子……。
一旦放縱於自身慾望當中的話,就會完全的失去控制。
雖然只要不去刺激她就不會有事,不過在某種層面上也可說是比起酒吞童子還更加危險。

對於自己有興趣的對象懷抱著強烈的執著。
只要對方仍舊存在,就會一直注視對方這事也是屢見不鮮。
大致上而言,會伸出她那長長的指尖,予以接觸,毀壞的一絲不剩───又或者是,為其
帶來汙穢而令其導致死亡。

對於身為自己另一側面的鬼種特別抱有興趣。
同樣的,對於和自己相同的存在(龍神之子)也會令其眼中閃閃發光。



……雖然這些都是伊吹童子原有的性質,然而現身於迦勒底的伊吹童子卻似乎有些不同。

她完全的
受到了
現代的影響

由於其本質是神的緣故,即便無法與人類處於相同的角度,她的行為舉止也像是
「適應了現代社會而過活的英靈/神靈大姐姐」這麼一回事。
對於人類是怎樣的存在,也顯露出了相當的學習精神。

包含御主在內,會對他人進行誘惑或是挑釁。
可能是她曾在某處學習過現代社會的事物吧,又或者是遇見同樣適應了現代社會的英靈,
因而強行將那份紀錄以迦勒底式召喚的特殊性作為藉口給帶了過來吧,雖然英靈福爾摩斯
如此推斷,卻不曉得這是否就是真相。

關於寶具的真名解放等等,一旦認真起來之後,就會做出和與生俱來的「神/KAMI」的
性質所相符的舉動,不過平時則是享受著作為無拘無束的「蛇的大姐姐」這樣的自己。



此外,處於幼體型態(第一階段靈基)時,則會表現出將「蛇的大姐姐的伊吹」與「身為神
/KAMI的伊吹」兩者混合之後的言行。
本人所說的「如果蛻皮之後會很危險」,恐怕就是在說「身為神/KAMI的伊吹」這件事吧


○蛇神的神核:A
包含了神性的複合技能。
由於在神話中是與人類間的混血之故,本來應該是難以具備神性才對的……
身為八岐大蛇之子的伊吹童子,破例的獲得了高等級的此一技能。
如果衰落為鬼的話,將會失去此技能,而被替換成低等級的神性技能吧。

○八脈怒濤:B
作為具備八岐大蛇神靈的另一側面,繼承了作為洪水之神的性質之物。
伴隨著強烈攻擊性的不變肉體,會將一切事物破壞殆盡。

〇汙穢的指尖:A
喪失純粹性,名譽掃地,以及死亡。
被伊吹童子的指尖所觸及之物乃是不潔,不被允許出現在神或是人的面前。
雖然被分類為攻擊性技能,不過以死靈、魔獸、衰落的諸神作為對象時,即便是在
非戰鬥的時候也能獲得加成效果。

『神劍‧草那藝之大刀』

等級:A+
種類:對軍/對城寶具
範圍:1~60
最大捕捉:500人

Shinken‧Kusanaginotachi
據記紀中的素戔嗚尊神話所述,被驅逐出高天原的素戔嗚尊來到了出雲國,拯救了被當成
活祭品的奇稻田姬,擊敗了巨大的怪物。
那頭怪物正是八岐大蛇。
有著八頭八尾的紅眼怪物───
身長足以綿延八座山谷與山峰的,巨大之蛇。
乃是日本最大的災害龍。

素戔嗚尊擊敗了這頭大蛇(龍),從牠的尾巴當中取得了一柄神劍。
神劍之名為草那藝之大刀。
別名為草薙劍,天叢雲劍,都牟刈之太刀。
據說隨後被供奉於熱田神宮,被視為三大神器之一。

伊吹童子將源自於父親八岐大蛇體內的這柄神劍作為寶具使用。
解放真名的一擊,乃是足以劈開八座山谷與山峰,誕生出八條大河的恐怖之物……
然而,據伊吹童子所述,這僅是暫時性的借用了神劍的些許光芒而已
其真正價值絕非這種程度,這麼一回事。

#FGO #伊吹童子

LED光質和溫室披覆材料對萵苣生長之影響

為了解決CV24 混合比的問題,作者蔡竣宇 這樣論述:

萵苣(Lactuca sativa L.)屬菊科一年生草本植物,品種多,生長型態和特徵亦不同,葉色一般可分為深紅色、紅色和綠色三種。本研究首先探討紅光(R)、藍光(B)、綠光(G)和黃光(Y)四種不同光質LED(Light-emitting diode, LED),以120 µmole‧m-2‧s-1光強度及1000 ppm二氧化碳濃度,探討對綠葉波士頓萵苣(Boston lettuce)和紅葉紫艷萵苣(Ziyan Lettuces)兩種品種之生長和光合作用效率之影響。試驗15天後,兩種萵苣葉片外觀型態些微不同外,波斯頓萵苣生長量以綠光處理最高;紫艷萵苣生長量以紅光和綠光處理較高,藍光可促進

轉色。以20、40、60、80、100及120 µmole‧m-2‧s-1六種不同光強度與400、600、800、1000、1200及1400ppm 六種二氧化碳濃度下,於四種不同光質下之兩種萵苣的光合作用效率,波斯頓萵苣於光強度為100及120 µmole‧m-2‧s-1且二氧化碳濃度為1200及1400 ppm時,綠光有最高光合作用效率;紫艷萵苣於光強度120 µmole‧m-2‧s-1且二氧化碳濃度為1000ppm以上時,則以紅光有最高光合作用效率。三種光質不同比例混合之結果,波斯頓萵苣以紅藍綠混光RBG(R 32% + B 48 % + G 20 %)和紫艷萵苣以紅藍黃混光RBY(R

36% + B 54 % + Y 10 %)有最高的光合作用效率;植株生長量、葉片型態、硝酸鹽含量和電功率消耗,波斯頓萵苣於紅藍綠(RBG)混光處理,葉片型態較緊密,且呈色較深,雖生長量較綠光(G)和白光(W)低,但硝酸鹽含量且電功率消耗較低;紫艷萵苣於紅藍黃(RBY)混光,葉片呈色較深,生長量與紅光(R)比較並無顯著差異,但硝酸鹽含量且電功率消耗較低,兩種品種萵苣皆適用於消費者利用。以不同化學成分及配方比例,分別製成G4、G4+5%LDPE和G4+10%LDPE等三種披覆膜,結果於可見光波段透光率和拉伸強度以G4+5%LDPE較高,拉伸延展性和溫室降溫效果則以G4+10%LDPE較高,作物生

長量,波斯頓萵苣以G4披覆膜,紫艷萵苣以G4+5%LDPE最高,顯示兩種萵苣栽培適合之披覆膜並不相同。未來於植物工廠內可選用適宜的光照模式,以及適合化學材料所開發之披覆膜,改善溫室內適合作物生長之微氣候,以提高作物產量並讓消費者在食品安全上有更好的保障。

電化學基礎教程(第二版)

為了解決CV24 混合比的問題,作者高鵬 這樣論述:

“互聯網+”與移動學習相結合的立體化教材,十個電化學演示實驗視頻掃描二維碼即可觀看。 《電化學基礎教程》(第二版)系統介紹了電化學的基本原理、方法及應用,注重物理化學與電化學的知識體系銜接,重視基本概念的闡述,內容新穎、難易適中。全書分為四個部分,第一部分介紹電化學體系的組成以及導體和液、固態電解質的性質(第1~3章);第二部分介紹電化學熱力學原理以及電極/溶液介面雙電層的結構、性質和研究方法(第4、5章);第三部分介紹電極過程動力學基本原理及研究方法(第6~9章);第四部分介紹化學電源、電鍍、電解、腐蝕防護等領域一些實際電極過程的基本原理(第10章)。 《電化學基礎教程》(第二版)主要供

高等院校應用化學、物理化學及相關專業作為電化學原理教材使用,也可供化學電源、表面處理、工業電解、腐蝕防護、電分析化學、材料電化學等領域的教學、科研、技術人員參考。 高鵬,男,本科、碩士畢業于哈爾濱工業大學電化學專業,博士畢業于哈工大材料學專業,現在哈工大(威海)電化學專業任教,主講電化學原理、結構化學、化學電源工藝學等課程。主要研究方向為鋰離子電池材料,發表科研論文20餘篇,包括《Journal of Power Sources》等SCI-Top期刊。出版《從量子到宇宙》科普圖書一部,獲評2017年3月“中國好書”。 第1章 緒論1 1.1電化學簡介1

1.2電化學的歷史2 1.3電化學研究領域的發展4 1.4本書結構與學習方法6 複習題6 第2章 導體和電化學體系7 2.1電學基礎知識7 2.1.1電場與電勢7 2.1.2導體及其在電場中的性質8 2.2兩類導體的導電機理9 2.2.1電子導體的導電機理9 2.2.2離子導體的導電機理10 2.3電化學體系11 2.3.1兩類電化學裝置11 2.3.2從電子導電到離子導電的轉換12 2.4法拉第定律13 2.5實際電化學裝置的設計14 2.5.1實際電化學裝置的組成14 2.5.2實際電化學裝置設計示例15 複習題17 第3章 液態電解質與固態電解質18 3.1電解質溶液與離子水化18

3.1.1溶液中電解質的分類18 3.1.2水的結構與水化焓18 3.1.3離子的水化膜20 3.1.4固/液介面的水化膜21 3.2電解質溶液的活度22 3.2.1活度的概念22 3.2.2離子的平均活度23 3.2.3離子強度定律24 3.3電解質溶液的電遷移25 3.3.1電解質溶液的電導率25 3.3.2離子的淌度27 3.3.3離子遷移數29 3.3.4水溶液中質子的導電機制30 3.4電解質溶液的擴散31 3.4.1Fick第一定律31 3.4.2Fick第二定律33 3.4.3擴散係數34 3.5電解質溶液的離子氛理論35 3.5.1離子氛的概念35 3.5.2鬆弛效應與電泳效應

36 3.5.3盎薩格(Onsager)極限公式37 3.5.4交流電場和強電場對電解質電導的影響37 3.6無機固體電解質38 3.7聚合物電解質39 3.8熔鹽電解質41 3.8.1熔融電解質41 3.8.2室溫離子液體42 複習題43 第4章 電化學熱力學45 4.1相間電勢與可逆電池45 4.1.1內電勢與外電勢45 4.1.2介面電勢差47 4.1.3電化學勢與費米能級47 4.1.4可逆電池48 4.2電極電勢49 4.2.1氫標電極電勢與Nernst方程50 4.2.2氫標電極電勢在計算中的應用51 4.2.3可逆電極52 4.3液體接界電勢53 4.4離子選擇性電極55 4.

4.1膜電勢55 4.4.2玻璃電極56 4.4.3其他類型的離子選擇性電極57 複習題59 第5章 雙電層60 5.1雙電層簡介60 5.1.1雙電層的形成60 5.1.2離子雙層的形成條件61 5.1.3理想極化電極與理想不極化電極62 5.2雙電層結構的研究方法63 5.2.1電毛細曲線63 5.2.2微分電容曲線65 5.2.3零電荷電勢67 5.2.4離子表面剩餘量68 5.3雙電層結構模型的發展69 5.3.1Helmholtz模型與Gouy-Chapman模型69 5.3.2Gouy-Chapman-Stern模型70 5.3.3Grahame模型與特性吸附76 5.3.4Bo

ckris模型與溶劑層的影響79 5.4有機活性物質在電極表面的吸附80 5.4.1有機物的可逆吸附81 5.4.2有機物的不可逆吸附84 複習題84 第6章 電化學動力學概論86 6.1電極的極化86 6.1.1極化與過電勢86 6.1.2極化曲線與三電極體系86 6.1.3穩態極化曲線的測量89 6.1.4電化學工作站90 6.2不可逆電化學裝置90 6.3電極過程與電極反應92 6.3.1電極過程歷程分析92 6.3.2電極反應的特點與種類93 6.4電極過程的速率控制步驟94 6.4.1速率控制步驟94 6.4.2常見極化類型96 6.4.3電極過程的特徵及研究方法96 複習題97

第7章 電化學極化99 7.1電化學動力學理論基礎99 7.1.1化學動力學回顧99 7.1.2電子轉移的動態平衡與極化本質101 7.1.3電子轉移動力學理論發展簡介103 7.2電極動力學的Butler-Volmer模型104 7.2.1單電子反應的Butler-Volmer公式104 7.2.2傳遞係數108 7.2.3標準速率常數108 7.2.4交換電流密度109 7.3單電子反應的電化學極化111 7.3.1電化學極化下的Butler-Volmer公式111 7.3.2Tafel公式111 7.3.3線性極化公式113 7.4多電子反應的電極動力學114 7.4.1多電子反應的B

utler-Volmer公式114 7.4.2多電子反應的電化學極化117 7.4.3多電子反應中控制步驟的計算數118 7.5電極反應機理的研究118 7.5.1利用電化學極化曲線測量動力學參數119 7.5.2電極反應的級數120 7.5.3平衡態近似與電極反應歷程分析120 7.6分散層對電極反應速率的影響——ψ1效應122 7.6.1分散層電勢差對電極動力學的影響122 7.6.2考慮了ψ1電勢的動力學公式123 7.6.3過硫酸根離子還原極化曲線分析124 7.7平衡電勢與穩定電勢125 7.7.1穩定電勢125 7.7.2如何建立平衡電勢126 複習題127 第8章 濃度極化13

0 8.1液相傳質130 8.1.1液相傳質方式130 8.1.2液相傳質流量131 8.1.3支持電解質132 8.2擴散與擴散層133 8.2.1穩態擴散與非穩態擴散133 8.2.2擴散層134 8.3穩態擴散傳質規律135 8.3.1理想穩態擴散135 8.3.2穩態對流擴散136 8.4可逆電極反應的穩態濃度極化140 8.4.1產物不溶141 8.4.2產物可溶,且產物初始濃度為零142 8.4.3產物可溶,且產物初始濃度不為零144 8.5電化學極化與濃度極化共存時的穩態動力學規律145 8.5.1混合控制的穩態動力學公式146 8.5.2電化學極化和濃度極化特點比較148 8.

6流體動力學方法簡介149 8.6.1旋轉圓盤電極149 8.6.2旋轉環盤電極152 8.7電遷移對擴散層中液相傳質的影響153 8.8表面轉化步驟對電極過程的影響155 8.8.1表面轉化步驟控制時的動力學公式156 8.8.2均相表面轉化與液相傳質共同控制時的動力學公式157 複習題159 第9章 基本暫態測量方法與極譜法161 9.1電勢階躍法161 9.1.1平面電極的大幅度電勢階躍163 9.1.2時間常數166 9.1.3微觀面積與表觀面積169 9.1.4球形電極的大幅度電勢階躍170 9.1.5微電極172 9.1.6准可逆和不可逆電極反應的電勢階躍174 9.2電流階躍法

176 9.2.1電流階躍下的粒子濃度分佈函數177 9.2.2可逆電極反應的電勢-時間曲線179 9.2.3不可逆電極反應的電勢-時間曲線181 9.2.4電極反應動力學參數測量方法小結182 9.3迴圈伏安法183 9.3.1掃描過程中的濃度分佈曲線變化183 9.3.2可逆體系的迴圈伏安曲線185 9.3.3准可逆和不可逆體系的迴圈伏安曲線187 9.3.4吸脫附體系的迴圈伏安曲線188 9.3.5雙層電容與溶液電阻對CV曲線的影響189 9.4電化學阻抗譜189 9.4.1電工學基礎知識190 9.4.2阻抗複平面圖191 9.4.3電化學體系的等效電路與阻抗譜192 9.4.4阻抗譜

的半圓旋轉現象與常相位元件195 9.4.5阻抗譜的資料處理與解析196 9.5滴汞電極與極譜法196 9.5.1滴汞電極197 9.5.2擴散極譜電流198 9.5.3極譜波200 複習題202 第10章 實際電極過程204 10.1電催化概述204 10.2氫電極過程206 10.2.1氫在電極上的吸附206 10.2.2氫的陰極還原208 10.2.3氫的陽極氧化211 10.3氧電極過程213 10.3.1氧的陰極還原機理214 10.3.2氧在電極上的吸附216 10.3.3氧陰極還原的電催化劑216 10.3.4氧的陽極氧化機理218 10.4金屬陰極過程218 10.4.1金屬

陰極過程基本特點219 10.4.2簡單金屬離子的陰極還原220 10.4.3金屬配離子的陰極還原221 10.4.4電結晶222 10.4.5電解法製備金屬粉末224 10.4.6電鑄225 10.5金屬陽極過程225 10.5.1正常的金屬陽極溶解過程225 10.5.2金屬的鈍化226 10.5.3金屬的自溶解228 10.5.4金屬腐蝕與防護230 10.5.5金屬電解加工與拋光233 10.5.6電池中鋅電極的陽極過程234 10.5.7鋁合金的陽極氧化235 複習題237 附錄 標準電極電勢表(298.15K,101.325kPa)239 習題答案241 參考文獻242 符

號表243 前言 本書第一版問世後,受到了廣大讀者的歡迎,五年多來已經多次重印,很多高校都選用本書作為“電化學原理”和“電化學基礎”課程的教材,使我們深受鼓舞,也倍感責任重大。為了進一步提高教材品質,跟上電化學學科發展與“互聯網+”教學的步伐,我們結合近年來的教學和科研實踐,特別是使用本教材的兄弟院校回饋的資訊,對本書加以全面的修訂,推出了第二版。 在這一版中,我們進行了以下修改。首先,對全書內容進行了全面的查漏補缺,訂正了疏漏和不足之處,調整了部分章節結構,使讀者更易理解與學習;其次,新增了固態電解質、迴圈伏安法、電化學阻抗譜、實際電化學裝置設計等章節,使全書內容更完

整、更實用;最後,新增了二維碼圖文與視頻素材,使教學內容立體化呈現,讀者學起來更生動。 紙質教材與移動學習相結合的二維碼素材可以說是本版的一大特色,我們將演示實驗視頻、輔助圖文素材通過掃描二維碼的方式呈現到讀者手機端。俗話說,百聞不如一見,實驗配合理論,可以使讀者更直觀地瞭解各種測試手段,更有利於教學內容的理解與應用。因此,本書設計了Tafel曲線測量、穩態濃度極化曲線測量、電勢階躍法、迴圈伏安法、電化學阻抗譜、電解水、電鍍、鈍化曲線的測量等演示實驗,分佈在各相關章節。 本次修訂由高鵬、朱永明和於元春共同完成,其中第1~5章由朱永明修訂,第6~10章由高鵬修訂,二維碼演示實驗視頻由於元春設

計並講解,二維碼圖文素材由高鵬編寫,全書由高鵬統稿。屠振密教授和胡會利老師再次審閱了書稿,提出了許多寶貴意見,在此致以誠摯的謝意。 本書在修訂過程中得到了電化學教研室曹立新、滕祥國、劉海萍、畢四富等同事的支持與幫助,得到了總校電化學教研室張翠芬、李甯、張景雙、趙力等師長們的關心與鼓勵,在此一併表示感謝。 希望通過本次修訂,使本書成為一本內容新穎、詳略得當、實用性強、易教易學的電化學教材。由於能力所限,疏漏與不足之處在所難免,敬請廣大讀者朋友們批評指正,可通過電子郵箱[email protected]與作者聯繫。 高鵬 朱永明 哈爾濱工業大學(威海) 2018年10月

利用電漿輔助化學沉積提升鋰離子電池中富鎳三元正極材料電化學性能之應用

為了解決CV24 混合比的問題,作者曾子芯 這樣論述:

鋰離子電池作為一種新型的綠色能源,且具有多方面的優點,被廣泛應用於手機和筆記型電腦等數碼電子產品,純電動及混合動力新能源汽車,以及能源儲能系統之中。正極材料是鋰離子電池的關鍵組成,其不僅作為電極材料參與電化學反應,同時還要充當鋰離子源。理想的正極材料首先要有較高的化學穩定性和熱穩定性以保證充放電的安全,同時要有良好的電化學性能,具備較大的電容量與工作電壓、優良的循環和倍率性能。本實驗以廠商提供的商用富鎳正極材料粉末LiNi0.8Co0.1Mn0.1O2(NCM811)在經過混漿塗佈後,再利用電漿濺鍍的方式進行表面改質,其中我們選擇了氮化鈦以及氧化鈦作為改質材料,而在電漿處理上因應不同改質材料

的性質需選擇直流或射頻濺鍍。在電漿改質後,由於TiN良好的導電性與導熱性使其提升初始電容量至218.3 mAh/g,並且高溫下的循環穩定性在40圈以前依然維持在200 mAh/g,而後才漸漸有下降的趨勢,以及透過DSC可以看到放熱峰後移了53oC,安全性能也得到改善;TiO2因為是絕緣體,相對導電性沒有像TiN來的好,因此我們著重討論TiN改質。將TiN改質後的極片放在大氣環境下五天後,透過XPS可以明顯看出因TiN披覆而有效保護極片,使NCM811不與空氣中的CO2反應產生Li2CO3。將極片進行充放電50圈後,從SEM可以看出改質後的NCM顆粒被完整的保護,而原始的NCM811出現巨大的裂

痕,進而影響電化學表現。經由一系列改質後的極片之結構分析與電化學分析,認為電漿濺鍍能有效控制改質膜厚以及品質穩定性,並且在正極材料的安全性與循環穩定性皆有提升,值得注意的是電漿改質的方式是有望一次生產大量,因此是具有發展潛力的改質方式應用於正極材料。