鉛酸電池浮充電壓的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列各種有用的問答集和懶人包

鉛酸電池浮充電壓的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦段萬普寫的 蓄電池使用和維護 和鍾國彬(主編)的 鉛酸蓄電池壽命評估及延壽技術都 可以從中找到所需的評價。

另外網站工業用電池NPW Type也說明:VRLA Batteries NPW Type NPW 為高率型(瓦特)密閉閥調式免維護鉛酸電池(VRLA);具有高能量、高精密度、高品質、不漏液、體積小、免維護不需定期均充等特性,最適用在高 ...

這兩本書分別來自化學工業 和中國電力所出版 。

國立高雄科技大學 土木工程系 沈茂松、張志誠所指導 吳致穎的 太陽能電滲在浮木卵石地質改良工法之研究 (2020),提出鉛酸電池浮充電壓關鍵因素是什麼,來自於太陽能電滲、垂直浮木卵石地質改良工法。

而第二篇論文明志科技大學 機械工程系機械與機電工程碩士班 黃道易所指導 蔡文裕的 機車火燒車調查鑑定標準作業程序之研究 (2019),提出因為有 電動機車、機車火災鑑定、機車致災零組件危險因子分析的重點而找出了 鉛酸電池浮充電壓的解答。

最後網站最傷電動車電池充電方式!操作不當一次電池可能就廢了!則補充:我們再來看一下通常額定12V的鉛酸電池的電壓可以被浮充到14.7V(鉛酸電池有溫度 ... 由此可見48V充電器根本不能充60V的蓄電池,(48伏的鉛酸電池充電器通常最高浮充電壓設計 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了鉛酸電池浮充電壓,大家也想知道這些:

蓄電池使用和維護

為了解決鉛酸電池浮充電壓的問題,作者段萬普 這樣論述:

本書系統介紹了合理使用和有效維護蓄電池的知識,同時對鉛酸蓄電池和鋰離子電池使用中的維護工藝以及專用設備做了詳細說明。實踐證明,蓄電池的合理使用與維護,與現在流行的“免維護狀態”相比,可以得到成倍延長蓄電池使用壽命的經濟效益。 本書可供蓄電池設計、製造,新能源汽車動力電池使用和維護,以及相關控制電氣設計者參考。 段萬普,鄭州工程技術學院電動汽車實驗室,電動汽車專家、高級工程師,畢業于蘭州鐵道學院內燃機車專業。畢業後一直在昆明鐵路局廣通機務段做技術工作。曾先後出版數本圖書,發表70篇論文。現在鄭州工程技術學院電動汽車實驗室任副主任,從事延長蓄電池使用壽命的技術開發及電動汽車研

究工作。 第1章 鉛酸蓄電池原理及基本概念 / 1  1.1 基本原理 / 1   1.1.1 充放電反應過程 / 1   1.1.2 標稱電壓 / 2   1.1.3 充放電反應的獨立性 / 2   1.1.4 鉛酸蓄電池的化學能存儲方式 / 3   1.1.5 鉛酸蓄電池的析氣 / 3   1.1.6 鉛酸蓄電池的電動勢 / 4   1.1.7 開路電壓和容量關係 / 4   1.1.8 單體電池都是並聯存在的 / 5  1.2 基本概念 / 5   1.2.1 鉛酸蓄電池放電下限標準 / 5   1.2.2 鉛酸蓄電池的荷電狀態 / 6   1.2.3 鉛酸蓄電池中電

極負荷分析 / 6   1.2.4 鉛酸蓄電池中正極板的腐蝕 / 7   1.2.5 電池的內阻 / 7   1.2.6 電解液密度與容量的關係 / 8   1.2.7 電池的實際容量的控制因素 / 8   1.2.8 電解液的分層 / 9  1.3 常用須知 / 10   1.3.1 除硫化和容量復原技術 / 10   1.3.2 充放電反應的限制因素 / 11   1.3.3 電池非使用放電 / 12   1.3.4 電池水消耗 / 12   1.3.5 電池的容量衰減 / 13   1.3.6 電池的“反極” / 13   1.3.7 溫度對電池性能的影響 / 14   1.3.8 幹荷

電電池的啟用 / 15   1.3.9 充電的合理限度 / 15  1.4 輔助知識 / 16   1.4.1 合理使用添加劑 / 16   1.4.2 “免維護電池” 的誤區 / 16   1.4.3 蓄電池用酸及蓄電池用水的標準 / 17   1.4.4 蓄電池水品質控制及簡易檢驗法 / 17   1.4.5 配酸作業 / 18   1.4.6 硫酸電解液對電池放電性能的影響 / 20   1.4.7 □□蓄電池和鉛碳電池 / 21  1.5 閥控電池的基本概念 / 22   1.5.1 鉛酸蓄電池發展的四個階段 / 22   1.5.2 閥控電池的優缺點 / 23   1.5.3 閥控電

池使用中的幾個問題 / 24   1.5.4 鉛酸蓄電池迴圈壽命的加速試驗 / 25  1.6 鉛酸蓄電池的基本類別 / 27   1.6.1 啟動型電池 / 28   1.6.2 儲能型電池 / 28   1.6.3 動力型電池 / 28   1.6.4 專用結構電池的錯誤組合 / 28  本章小結 / 29 第2 章 鉛酸蓄電池的幾種充電方式和組合性能 / 30  2.1 初充電 / 30  2.2 恒流充電 / 33  2.3 恒壓充電 / 34  2.4 浮充電 / 35  2.5 快速充電 / 36  2.6 均衡充電 / 38  2.7 低壓充電 / 38  2.8 補充電 /

40  2.9 電池容量串並聯計算 / 40  2.10 電池容量的測定 / 41  本章小結 / 42 第3 章 鉛酸蓄電池通用保養及故障處理 / 43  3.1 電池並聯使用故障多 / 43  3.2 電池組中各單格的均衡性要求 / 45  3.3 減少腐蝕的措施 / 47  3.4 蓄電池連接狀態 / 48  3.5 減少自放電的措施 / 49  3.6 蓄電池的絕緣狀態 / 52  3.7 電池硫化和除硫化技術 / 54   3.7.1 硫化產生的過程 / 54   3.7.2 化學除硫化方法 / 55 3.7.3 物理除硫化方法 / 56  3.8 電池防凍措施 / 58   3.

8.1 外部保溫及加溫 / 58   3.8.2 採用涓流充電 / 58   3.8.3 控制電解液密度 / 58  3.9 定期進行人為充放電是有害的 / 59  3.10 延長電池使用壽命的方法 / 59  3.11 汽車蓄電池的失效方式 / 63  本章小結 / 64 第 4 章 通信電池的管理維護 / 65  4.1 通信電源蓄電池組的低成本運行措施 / 65   4.1.1 通信基站蓄電池組的技術現狀 / 65   4.1.2 對蓄電池組決策的幾點誤區 / 65   4.1.3 低成本運行的措施 / 66   4.1.4 專業化容量維護設備 / 67   4.1.5 對電池容量性掉

站的邏輯分析 / 68   4.1.6 通信電源蓄電池使用下限計算 / 69   4.1.7 UPS 電源蓄電池損壞分析和對策 / 70   4.1.8 通信車用閥控式鉛酸蓄電池維護 / 71   4.1.9 對閥控式鉛酸蓄電池補水的水位要求 / 73  4.2 在微波通信站的使用 / 74   4.2.1 供電方式 / 74   4.2.2 常見故障原因分析 / 74   4.2.3 處理方法 / 75  4.3 閥控式鉛酸蓄電池爆炸分析 / 76  4.4 對電池提前失效原因的綜合分析 / 77   4.4.1 極板的不可逆硫酸鹽化 / 78   4.4.2 現行標準規範的不足 / 81

  4.4.3 電池的誤報廢 / 86   4.4.4 電池的不合理安裝 / 88   4.4.5 電池的人為過放電 / 89   4.4.6 電池原始品質低或結構不合理 / 90  4.5 閥控式鉛酸蓄電池線上容量維護 / 91   4.5.1 免維護的代價 / 91  4.5.2 建立備品制度 / 94   4.5.3 電池維護的三個階段 / 97   4.5.4 維護工藝 / 101   4.5.5 兩類維護工藝的比較 / 102   4.5.6 維護作業的頻次和經濟效益分析 / 102   4.5.7 對維護效果的確認方式 / 103   4.5.8 一體化基站蓄電池的選型與改造 /

105   4.5.9 對蓄電池的全面品質管制 / 107   4.5.10 基站蓄電池的合理安裝 / 108   4.5.11 在通信基站蓄電池組的輪換充電方法 / 108  4.6 開關電源對蓄電池的影響 / 109   4.6.1 現行開關電源充電方式的不合理之處 / 109   4.6.2 開關電源的充電管理 / 109   4.6.3 合理管理的效果 / 111   4.6.4 開關電源蓄電池參數設置的基本方法 / 113   4.6.5 頻繁停電地區充電方法 / 115   4.6.6 環境溫度維護方法 / 116   4.6.7 應用實例 / 117  4.7 蓄電池集團採購中的

技術要求 / 118   4.7.1 電池電解液的數量和密度 / 118   4.7.2 電池極板的數量 / 118   4.7.3 電池的連接方式 / 118   4.7.4 蓄電池的組合方式和構架高度 / 119   4.7.5 電池的極柱防護 / 120  4.8 蓄電池維護的技術層次和效益 / 120   4.8.1 “免維護” 層次 / 120   4.8.2 採用除硫化進行容量復原層次 / 121   4.8.3 線上容量維護層次 / 122   4.8.4 維護的□高層次TQC / 122   4.8.5 維護效益分析 / 123   4.8.6 避免電池誤報廢的扼要說明 / 1

23  4.9 對相關標準和現行的修正建議 / 125   4.9.1 美國IEEE 1188 標準的不足和失誤 / 125   4.9.2 對一些現行做法的修正建議 / 126  4.10 提高管理者的認識是□□步 / 127  4.10.1 不合理並聯 / 127   4.10.2 補加水 / 127   4.10.3 有效的檢測工藝 / 128  本章小結 / 128 第 5 章 鋰離子電池的原理、結構和使用 / 129  5.1 鋰離子電池簡介 / 129  5.2 鋰離子電池工作原理 / 131  5.3 鋰離子電池的優缺點 / 133   5.3.1 優點 / 133   5.3

.2 缺點 / 134  5.4 鋰離子電池失效機理 / 134   5.4.1 正常失效 / 134   5.4.2 過放電失效 / 134   5.4.3 過充電失效 / 135   5.4.4 高溫失效 / 135   5.4.5 備用失效 / 138  5.5 鋰離子電池內部材料 / 138   5.5.1 正負極材料 / 138   5.5.2 隔膜 / 139  5.6 鋰離子電池兩種結構 / 140   5.6.1 軟包結構 / 140   5.6.2 圓柱結構 / 141  5.7 鋰離子電池組保護電路 / 141  5.8 鋰離子電池的安全使用 / 142   5.8.1 影

響安全的機理 / 142   5.8.2 提高安全性的措施 / 142   5.8.3 個人鋰離子電池的安全使用 / 143  5.9 用鋰離子電池替換鉛酸蓄電池和鎳鎘電池的技術問題 / 144  5.10 鋰離子電池的充放電特點 / 144  5.11 鋰離子電池空載電壓技術含義 / 146  5.12 鋰離子電池組合中的點焊品質 / 149  5.13 螺紋連接的圓柱鋰離子電池 / 150  5.14 卡座連接的圓柱鋰離子電池 / 151  本章小結 / 152 第 6 章 電動汽車蓄電池合理使用與維護 / 153  6.1 電動汽車電池的選型 / 153   6.1.1 鉛酸蓄電池 /

153   6.1.2 □□蓄電池的結構及原理 / 154   6.1.3 鋰離子電池 / 156  6.1.4 鋰離子電池和鉛酸蓄電池的互換 / 157  6.2 蓄電池的成組效應 / 158   6.2.1 單體電池和電池組的概念 / 158   6.2.2 網路組合的認識過程和電池構架 / 161  6.3 網路組合結構配套的BMS / 167   6.3.1 基本說明 / 167   6.3.2 電流電壓採集技術要求 / 168   6.3.3 儀錶及整車控制器的配套開發 / 169   6.3.4 司機違章使用電池的記錄 / 170   6.3.5 資料存儲和通信 / 170   

6.3.6 單串組合的BMS / 170   6.3.7 對能量轉移功能的分析 / 170   6.3.8 網路組合的效能和實施 / 171  6.4 鋰離子電池組維護的必要性和意義 / 172   6.4.1 人工維護的必要性 / 172   6.4.2 均衡性維護設備 / 173  6.5 電動汽車鋰離子電池維護的基本工藝 / 175  6.6 電動汽車的12V 電池 / 177   6.6.1 採用26650 型錳鋰電池 / 177   6.6.2 採用26650 型磷酸鐵鋰電池 / 177   6.6.3 獨立12V 電池充電電壓調整 / 178  6.7 電動汽車的車載充電機充電 /

178  6.8 充電樁充電和快速充電概念 / 179  6.9 換電站充電 / 181  6.10 蓄電池組的熱管理和浸水實驗 / 182   6.10.1 蓄電池組的熱管理 / 182   6.10.2 浸水實驗 / 182  6.11 電池組的熔斷保險 / 183  6.12 無軌電車供電方式 / 183   6.12.1 經濟分析 / 184   6.12.2 基礎技術 / 184   6.12.3 實施實例 / 184  6.13 電動汽車商業化運行 / 185   6.13.1 與燃油汽車比成本是電動汽車的關口 / 185   6.13.2 汽車電池的梯級使用和轉行使用 / 18

5   6.13.3 電動汽車商業化之路 / 186   6.13.4 換電車的選用 / 188   6.13.5 電動汽車採購須知 / 190   6.13.6 電動汽車蓄電池使用成本分析 / 191  本章小結 / 194 第 7 章 蓄電池在車輛上的應用 / 195  7.1 啟動電池的使用 / 195   7.1.1 工作狀態分析 / 195   7.1.2 汽車和幾種鐵路機車啟動電池的啟動過程分析 / 197   7.1.3 摩托車電池的電解液調節 / 203   7.1.4 啟動電池的損壞原因 / 203   7.1.5 汽車電池的集中維護效益分析 / 205  7.2 電動自行

車電池的使用 / 206   7.2.1 電池的選購與更換 / 206   7.2.2 電池的使用、保養和維修 / 206   7.2.3 電動自行車電池配組技術 / 207  7.3 生產用蓄電池車用電池使用 / 208   7.3.1 牽引蓄電池的工作特點和結構 / 208   7.3.2 蓄電池叉車和平板車蓄電池組的絕緣分析 / 209   7.3.3 蓄電池車D 型電池的替代 / 212   7.3.4 礦山機車蓄電池維護工藝 / 213   7.3.5 延長礦山機車蓄電池壽命的幾項措施 / 214   7.3.6 電動車輛蓄電池迴圈耐久試驗/ 216   7.3.7 蓄電池組電壓抽頭

問題 / 217   7.3.8 叉車蓄電池維護實例 / 217  7.4 電動遊覽車蓄電池使用條件 / 218   7.4.1 電池啟用充電 / 218   7.4.2 存在問題 / 219   7.4.3 電動遊覽車蓄電池工作分析 / 219   7.4.4 日常維護作業 / 220   7.4.5 管理運行方式 / 221   7.4.6 維護管理實例 / 222  本章小結 / 223 第 8 章 蓄電池和蓄電池組可靠性檢測 / 224  8.1 術語說明 / 224  8.2 連接狀態的檢測 / 225   8.2.1 檢測原理 / 225   8.2.2 對同性極柱的測量 / 2

25   8.2.3 對異性極柱的測量 / 226  8.3 漏電電流的檢測 / 227   8.3.1 測漏電電流 / 227   8.3.2 查找電池組接地點 / 227   8.3.3 漏電電流錶的校對 / 228  8.4 蓄電池對地絕緣的分析和檢測 / 228  8.5 蓄電池保有容量的檢測 / 229   8.5.1 檢測原理 / 229   8.5.2 保有容量檢測儀的使用方法 / 233   8.5.3 三種檢測方法的使用對比 / 236   8.5.4 對大容量電池的檢測 / 239  8.6 連體電池檢測儀 / 239   8.6.1 檢測原理 / 239   8.6.2 

檢測方法 / 240   8.6.3 啟動功率NP 檢測資料的用途 / 241   8.6.4 連體電池檢測儀的使用方法 / 242   8.6.5 使用注意事項 / 243   8.6.6 檢測儀的校對 / 243  8.7 蓄電池內阻的概念及測量 / 243   8.7.1 蓄電池內阻的構成 / 243   8.7.2 蓄電池動態內阻的測量方法 / 244   8.7.3 不能用靜態內阻的數值表達蓄電池保有容量 / 245   8.7.4 電導儀鑒定條件與使用條件的區別 / 246   8.7.5 電導儀的使用標準 / 247  本章小結 / 248 附錄 / 249

太陽能電滲在浮木卵石地質改良工法之研究

為了解決鉛酸電池浮充電壓的問題,作者吳致穎 這樣論述:

本研究以太陽能電滲改良垂直浮木卵石之軟弱黏土,再以實際載重試驗驗證其承載力的變化。含水量ω大於液性限度(LL)的飽和軟弱沉泥(ML), 20公分×20公分載重板承載力為0.0175(kg/〖cm〗^2),經太陽能電滲14天,承載應力為0.275(kg/〖cm〗^2)。飽和軟弱沉泥經插入垂直浮木卵石,受2KW太陽能電滲14天承載力增加至0.1825(kg/cm^2)。 本研究得知軟弱土壤經過電誘滲透改良之後,十字片剪試驗之剪力強度Su由原本平均0~2kPa(0.0204 kg/cm^2)提升至70kPa(0.7138 kg/cm^2)~90kPa(0.9177 kg/cm^2)以上,表示

土壤經過電滲壓密作用與土中水分子被引導至負極並經由抽水移除,可以增加承載力。本研究發現,土壤在加同樣含水量插竹子卵石的土槽,20公分×20公分的木板原可承受0.978( kg/cm^2)的載重,但在插竹子卵石區外,插入電極鈑經太陽能電滲時,木板可承受應力達0.1825kg/cm^2。依試驗得知,垂直浮木卵石地質改良工法(其承載應力為0.0978 kg/〖cm〗^2)改良效果比太陽能電滲改良工法(其承載應力為0.1825kg/〖cm〗^2)承載力低一點,軟弱土壤經過電誘滲透,十字片剪強度增加約35~45倍,承載應力也提升0.0175(kg/cm^2)增至0.275(kg/〖cm〗^2),但垂直浮

木卵石在軟弱黏土之2KW太陽能電滲電極棒的配置在竹陣外圍,提升的承載力0.1825(kg/cm^2)比純土壤電滲後承載力0.275(kg/cm^2)小,但比無電滲垂直浮木卵石改良工法多1.87倍,此為相同2KW電力陰陽極電離子擴散數量相同下,因竹子中空,電滲離子在土壤的傳遞路徑被延長,電離子固結路徑較長電離子密度較鬆散強度較低,不像純土壤內電離子為直線逸出電滲固結路徑較短電離子密度較濃、固結力強故改良土強度較大,所以太陽能電的效能比較低。

鉛酸蓄電池壽命評估及延壽技術

為了解決鉛酸電池浮充電壓的問題,作者鍾國彬(主編) 這樣論述:

本書基於設備全生命週期管理理念,在對變電站用鉛酸蓄電池壽命曲線和失效模式研究的基礎上,對影響蓄電池浮充壽命的本體參數、運維工況進行分析,對蓄電池線上監測及核容技術、檢測技術、修復再生技術也進行了介紹,對蓄電池設備採購過程中的品質控制、運行過程中的維護管理、退役後的修復利用具有參考意義。 全書共分九章,主要內容包括變電站直流系統概況、鉛酸蓄電池基礎知識、鉛酸蓄電池的浮充壽命、站用鉛酸蓄電池的典型失效模式、鉛酸蓄電池線上監測及核容技術、鉛酸蓄電池檢測技術、鉛酸蓄電池本體參數對浮充壽命的影響、鉛酸蓄電池運維工況對浮充壽命的影響、鉛酸蓄電池修復再生技術等。 鐘國彬:(1984-)

,男,廣東梅州人,中國科學技術大學材料學博士,就職于廣東電網有限責任公司電力科學研究院,高工程師,從事儲能電池技術研究。   蘇偉:(1971-),男,安徽池州人,廣東電網有限責任公司電力科學研究院化學與儲能所所長,教授高工程師,理學碩士,主要研究方向:電力化學。 1概述 1.1 鉛酸蓄電池發展概況 1.1.1 鉛酸蓄電池技術發展概況 1.1.2 鉛酸蓄電池在我國的發展 1.1.3 變電站用鉛酸蓄電池發展歷程 1.2 變電站直流電源系統概況 1.2.1 變電站直流電源系統組態標準 1.2.2 變電站直流電源系統技術要求 1.2.3 閥控式密封鉛酸蓄電池直流系統特點 1.3

鉛酸蓄電池在變電站應用現狀 1.3.1 站用鉛酸蓄電池概況 1.3.2 南方電網站用鉛酸蓄電池抽檢情況 2 鉛酸蓄電池基礎知識 2.1 鉛酸蓄電池的工作原理 2.2 鉛酸蓄電池的基本構造 2.2.1 正、負極板 2.2.2 隔板 2.2.3 正、負極柱 2.2.4 安全閥 2.2.5 電解液 2.2.6 電池槽和電池蓋 2.3 鉛酸蓄電池的製造工藝 2.4 鉛酸蓄電池的性能參數及特點 2.4.1 鉛酸蓄電池性能參數 2.4.2 鉛酸蓄電池性能特點 2.5 變電站用鉛酸蓄電池 2.5.1 鉛酸蓄電池型號及字母含義 2.5.2 變電站用鉛酸蓄電池主要名詞術語 2.5.3 變電站用鉛酸蓄電池技術指

標 3 鉛酸蓄電池的浮充壽命 3.1 迴圈壽命與浮充壽命 3.2 鉛酸蓄電池浮充壽命的影響因素 3.2.1 浮充電壓 3.2.2 環境溫度 3.2.3 正極板柵的腐蝕 3.2.4 負極極板硫酸鹽化 3.2.5 失水控制 3.2.6 熱失控 3.2.7 犃犌犕隔板彈性疲勞 3.2.8 均充電壓 3.2.9 蓄電池的不一致性 3.3 變電站用鉛酸蓄電池壽命曲線 3.3.1 站用鉛酸蓄電池歷史運維資料總體情況分析 3.3.2 站用鉛蓄電池內阻和浮充電壓資料分析 3.3.3 站用鉛酸蓄電池核容資料分析 3.3.4 高溫加速浮充老化實驗 4 站用鉛酸蓄電池的典型失效模式 4.1 鉛酸蓄電池的常見失效

方式 4.1.1 正極板柵腐蝕 4.1.2 正極活性物質軟化脫落 4.1.3 負極硫酸鹽化 4.1.4 電解液乾涸 4.1.5 熱失控 4.1.6 微短路 4.1.7 匯流排腐蝕 4.1.8 電池漏液 4.2 站用鉛酸蓄電池的典型失效模式分析 4.2.1 失效蓄電池基本資訊 4.2.2 失效蓄電池電極電位分析 4.2.3 失效蓄電池解剖分析 4.2.4 失效蓄電池的材料分析 4.2.5 站用犞犚犔犃電池典型失效模式分析 5 鉛酸蓄電池線上監測及核容技術 5.1 鉛酸蓄電池傳統維護技術 5.1.1 鉛酸蓄電池傳統維護措施 5.1.2 鉛酸蓄電池傳統維護技術 5.1.3 鉛酸蓄電池傳統維護技術的

不足 5.2 鉛酸蓄電池線上監測技術 5.2.1 鉛酸蓄電池實現線上監測的意義 5.2.2 鉛酸蓄電池線上監測技術現狀 5.3 鉛酸蓄電池線上核容技術 5.3.1 線上快速容量測試法(蓄電池容量分析儀) 5.3.2 電導(內阻)測量法(電導測試儀) 5.3.3 線上安時法 5.3.4 建模法 5.4 鉛酸蓄電池線上監測/核容/壽命預測系統實例 5.4.1 系統架構 5.4.2 系統功能 5.5 蓄電池線上監測技術發展趨勢 6 鉛酸蓄電池檢測技術 6.1 鉛酸蓄電池的標準 6.1.1 國家標準 6.1.2 行業標準 6.1.2 團體標準 6.2 鉛酸蓄電池檢測標準比較 6.3 鉛酸蓄電池檢測與

品質評價方法 6.3.1 外觀與結構 6.3.2 電池材料 6.3.3 單體蓄電池性能 6.3.4 蓄電池組性能 6.3.5 檢驗規則 7 鉛酸蓄電池本體參數對浮充壽命的影響研究 7.1 正極板柵合金的影響 7.2 正極板柵合金投鉛量的影響 7.3 匯流排合金的影響 7.4 裝配壓縮比的影響 7.5 安全閥壓的影響 7.6 電解液密度的影響 7.7 電解液飽和度的影響 7.8 蓄電池中雜質含量的影響 7.8.1 鐵離子的影響 7.8.2 氯離子的影響 8 鉛酸蓄電池運維工況對浮充壽命的影響 8.1 環境溫度的影響 8.2 浮充電壓的影響 8.3 電池一致性的影響 8.4 存儲條件的影響

9 鉛酸蓄電池修復再生技術 9.1 鉛酸蓄電池修復再生技術概況 9.1.1 常見的蓄電池修復方法 9.1.2 蓄電池修復的意義 9.2 鉛酸蓄電池單體修復再生 9.2.1 修復試驗 9.2.2 修復效果驗證 9.2.3 修復機理分析 9.3 整組鉛酸蓄電池修復再生 9.3.1 修復流程 9.3.2 修復案例 參考文獻 隨著變電站自動化、智慧化的程度越來越高以及值守無人化的推廣,變電站直流電源承擔的角色越來越重要。在變電站中,直流系統的蓄電池組與充電機並聯,一起對繼電保護、自動裝置、自動化設備、斷路器跳合閘機構等重要的直流負荷進行供電,當交流失電時,充電機不能輸出直流電,蓄

電池組作為唯一的直流電源對直流負荷進行供電。緊急情況下的蓄電池失效將可能導致變電站的重大運運行事故。因此,蓄電池組是直流電源系統的核心,其性能品質關係整個變電站的安全穩定運行。近年來發生了多起蓄電池故障引起的變電站全站失壓事件,影響惡劣。此外,蓄電池組的使用壽命普遍縮短,遠遠低於10~12年的設計使用壽命,也引起了電網人的重視。 銅酸蓄電池作為變電站主要的備用電源,卻歷來是電網研究的薄弱點,也是基層運維人員維護的難點。一方面由於蓄電池平時都處於待命狀態,真正發揮作用的機會不多,很容易被忽略;另一方面蓄電池核容時間長,工作量大,且兩次核容間隔的時間過長,中間留下很長的電池健康狀態空白期。日常巡

檢僅靠巡檢儀記錄蓄電池單體電壓,不能準確、有效地反映電池實際情況。為了延長蓄電池的使用壽命和提高使用可靠性,南方電網組織對變電站用銅酸蓄電池進行了研究。 本書基於設備全生命週期管理理念,在對變電站用銅酸蓄電池壽命曲線和典型失效模式研究的基礎上,對影響蓄電池浮充壽命的各種本體參數、運維工況進行分析,對蓄電池線上監測及核容技術、檢測技術、修復再生技術也進行了介紹。 內容覆蓋蓄電池全生命週期,對蓄電池設備採購過程中的品質控制、運行過程中的維護管理、退役後的修復利用具有參考意義。   全書共分九章,第1章介紹了銅酸蓄電池發展概況、變電站直流電源系統概況和銅酸蓄電池在變電站應用現狀;第2章介紹了銅酸

蓄電池的基礎知識,包括工作原理、基本構造、製造工藝、性能參數和特點等;第3章介紹了鉛酸蓄電池浮充壽命的影響因素,並結合歷史資料和加速老化試驗結果對變電站用蓄電池的壽命曲線進行分析;第4章介紹了鉛酸蓄電池常見的失效模式,以及變電站直流電源特定應用場景下的典型失效模式;第5章介紹了鉛酸蓄電池線上監測技術、在線核容技術以及發展趨勢;第6章在分析比較蓄電池檢測標準的基礎上,提出了一套檢測與品質評價方法;第7章介紹了蓄電池本體參數對浮充壽命的影響,包括正極板柵合金、投鉛量、匯流排合金、裝配壓縮比、安全閥壓、電解液密度、電解液飽和度和雜質含量等;第8章介紹了鉛酸蓄電池運維工況對浮充壽命的影響,包括環境溫度

、浮充電壓、電池一致性和存儲條件等;第9章介紹了銅酸蓄電池修復再生技術,特別是一種高分子材料修復液技術的應用效果和案例。書中內容主要出自作者及其團隊的研究成果,研究工作和本書的出版由南方電網公司重點科技項目(K-GD2014-165))資助。 廣東電網有限責任公司電力科學研究院的鐘國彬編寫了第1~9章,並對全書進行了校核,陳天生參與了第1章的編寫,王超博士參與了第6章的編寫;廣東電科院能源技術有限責任公司的蘇偉、魏增福參與了第1~3章的編寫,並對研究提供了大量的技術支撐;浙江南都電源動力股份有限公司的陳冬博士參與了第4、7、8章的編寫;合肥工業大學的劉新天研究員參與了第5章的編寫;廣州泓淮能

源科技有限公司的黃尚南為第9章的編寫提供了案例資料。在編寫過程中,作者參閱了大量國內外鉛酸蓄電池有關的論文、專著和資料,在此對這些論文、專著和資料的作者和編者們表示感謝。 限於編者水準,書中難免存在不妥之處,敬請廣大讀者批評指正,並給予諒解。 編者 2018年

機車火燒車調查鑑定標準作業程序之研究

為了解決鉛酸電池浮充電壓的問題,作者蔡文裕 這樣論述:

交通部統計至108年全台灣機動車輛總數達兩仟一佰萬輛,其中汽車佔總數38%,機車則佔總數62%,並統計十年內機動車輛成長比例,機車車輛數逐年增加比例大幅高於汽車車輛數,關係於台灣人口密集度高加上機車使用上方便、保養費用較親於大眾家庭,使機車成為大眾優先考慮之交通工具,但依據交通部機車使用狀況調查報告顯示,台灣機車平均車齡達10.2年,在使用高車齡機車下,值得我們探討零組件是否有老化滲油、電器是否受潮引發短路等,引發車輛火災之致災因子,影響駕駛者使用上的安全問題。 隨著環保法規逐漸的嚴格以及科技上的進步,機車增加了許多電子控制零組件,達到強勁的動力輸出下保有較低的廢氣排放,在加上

電動機車的趨勢發展,民眾能有跟多元的選擇,但也增加了鑑定人員在機車火災鑑定上需瞭解多種型式之構造,為了使鑑定人員在缺乏專業知識下,能有效率的釐清案發機車之起火原因,將整合各種型式之機車,逐一拆解分析所有零組件,探討使用上的致災因子及零組件經長時間使用下致災的可能性,並建立圖表可依照受燒部位對應機車零組件相關位置,再對照機車致災零組件危險因子分析表,確認案發機車起火位置並釐清起火原因。