渦輪 增 壓 車 注意事項的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列各種有用的問答集和懶人包

渦輪 增 壓 車 注意事項的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦高殿榮寫的 現代機械設計手冊:單行本液壓傳動與控制設計(第二版) 和母忠林(主編)的 柴油機故障快速診斷與維修要點都 可以從中找到所需的評價。

另外網站涡轮增压发动机——保养注意事项 - 微博也說明:现如今大街上跑的很多车都在尾部加了“T”的标示,这就是目前越来越流行的搭载涡轮增压发动机的汽车,涡轮增压的最大优点是它可在不增加发动机排量的 ...

這兩本書分別來自化學工業 和化學工業所出版 。

國立臺北科技大學 車輛工程系 陳柏全所指導 洪圃寬的 引擎控制參數之節能效益分析 (2019),提出渦輪 增 壓 車 注意事項關鍵因素是什麼,來自於引擎控制參數、節能技術、缸內直噴引擎、燃油經濟性。

而第二篇論文大葉大學 環境工程學系碩士班 張玉明所指導 劉振裕的 車輛柴油引擎四期及五期排放空氣污染物差異性研究 (2014),提出因為有 柴油引擎、粒狀污染物PM、氮氧化物NOX、一氧化碳CO、碳氫化合物HC的重點而找出了 渦輪 增 壓 車 注意事項的解答。

最後網站渦輪車5大使用禁忌,很多新手不懂,難怪漏油異響不斷- 華語熱點則補充:和自然吸氣相比, 渦輪增壓油耗更低, 動力也要強勁很多, 但是從保養的成本 ... 以上就是駕駛渦輪車需要格外注意的5點了,只有懂得養車才能增加汽車 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了渦輪 增 壓 車 注意事項,大家也想知道這些:

現代機械設計手冊:單行本液壓傳動與控制設計(第二版)

為了解決渦輪 增 壓 車 注意事項的問題,作者高殿榮 這樣論述:

一部順應“中國製造2025”智慧裝備新要求、技術先進、資料可靠的現代化機械設計工具書,從新時代機械設計人員的實際需求出發,追求現代感,兼顧實用性、通用性,準確性,涵蓋了各種常規和通用的機械設計技術資料,貫徹了新的國家及行業標準,推薦了國內外先進、智慧、節能、通用的產品。 第20篇 液壓傳動與控制設計 第1章 常用基礎標準、圖形符號和常用術語 1.1基礎標準20-3 1.1.1液壓氣壓系統及元件的公稱壓力系列20-3 1.1.2液壓泵及液壓馬達的公稱排量系列20-3 1.1.3液壓元件的油口螺紋連接尺寸20-4 1.1.4液壓系統硬管外徑系列和軟管內徑系列20-4 1.1.

5液壓缸、氣缸內徑及活塞杆外徑系列20-4 1.1.6液壓缸、氣缸活塞行程系列20-4 1.1.7液壓元件清潔度指標20-5 1.1.8液壓閥油口、底板、控制裝置和電磁鐵的標識20-7 1.1.9液壓泵站油箱公稱容量系列20-7 1.2液壓圖形符號20-7 1.2.1圖形符號20-7 1.2.2液壓圖形符號繪製規則20-16 1.3常用液壓術語20-19 1.3.1基本術語20-19 1.3.2液壓泵的術語20-20 1.3.3液壓執行元件的術語20-20 1.3.4液壓閥的術語20-21 1.3.5液壓輔件及其他專業術語20-23 第2章 液壓流體力學常用計算公式及資料 2.1流體力學基本

公式20-25 2.2流體靜力學公式20-25 2.3流體動力學公式20-26 2.4阻力計算20-27 2.4.1沿程阻力損失計算20-27 2.4.2局部阻力損失計算20-28 2.5孔口及管嘴出流、縫隙流動、液壓衝擊20-30 2.5.1孔口及管嘴出流計算20-30 2.5.2縫隙流動計算20-31 2.6液壓衝擊計算20-32 第3章 液壓系統設計 3.1設計計算的內容和步驟20-33 3.2明確技術要求20-33 3.3確定液壓系統主要參數20-33 3.3.1初選系統壓力20-33 3.3.2計算液壓缸尺寸或液壓馬達排量20-34 3.3.3作出液壓缸或液壓馬達工況圖20-35

3.4擬訂液壓系統原理圖20-35 3.5液壓元件的選擇20-35 3.5.1液壓執行元件的選擇20-35 3.5.2液壓泵的選擇20-36 3.5.3液壓控制閥的選擇20-37 3.5.4蓄能器的選擇20-37 3.5.5管路的選擇20-37 3.5.6確定油箱容量20-38 3.5.7篩檢程式的選擇20-38 3.5.8液壓油的選擇20-38 3.6液壓系統性能驗算20-38 3.6.1系統壓力損失計算20-39 3.6.2系統效率計算20-39 3.6.3系統發熱計算20-39 3.6.4熱交換器的選擇20-40 3.7液壓裝置結構設計20-41 3.8液壓泵站設計20-45 3.8.1

液壓泵站的組成及分類20-45 3.8.2油箱及其設計20-46 3.8.3液壓泵組的結構設計20-47 3.8.4蓄能器裝置的設計20-50 3.9液壓集成塊設計20-51 3.10全面審核及編寫技術檔20-55 3.11液壓系統設計計算實例20-56 3.11.1機床液壓系統設計實例20-56 3.11.2油壓機液壓系統設計實例20-58 3.11.3注塑機液壓系統設計實例20-59 第4章 液壓基本回路 4.1概述20-61 4.2液壓源回路20-61 4.3壓力控制回路20-63 4.3.1調壓回路20-64 4.3.2減壓回路20-65 4.3.3增壓回路20-66 4.3.4保壓

回路20-67 4.3.5卸荷回路20-70 4.3.6平衡回路20-73 4.3.7緩衝回路20-74 4.3.8卸壓回路20-78 4.3.9制動回路20-81 4.4速度控制回路20-82 4.4.1調速回路20-82 4.4.2增速回路20-86 4.4.3減速回路20-88 4.4.4二次進給回路、比例閥連續調速回路20-89 4.5同步控制回路20-90 4.6方向控制回路20-94 4.6.1換向回路20-94 4.6.2鎖緊回路20-96 4.6.3連續往復運動回路20-97 4.7液壓馬達回路20-99 4.8其他液壓回路20-101 4.8.1順序動作回路20-101 4.

8.2插裝閥控制回路20-104 4.9二次調節靜液傳動回路20-105 第5章 液壓工作介質 5.1液壓介質的分類20-106 5.1.1分組20-106 5.1.2命名20-106 5.1.3代號20-106 5.1.4H組(液壓系統)常用工作介質的牌號及主要應用20-106 5.1.5常用工作介質與材料的適應性20-108 5.2工作介質的選擇20-109 5.2.1根據工作環境選擇20-109 5.2.2根據液壓系統工作溫度選擇20-109 5.2.2.1液壓系統的工作溫度20-109 5.2.2.2工作介質的工作溫度範圍20-109 5.2.3根據工作壓力選擇20-110 5.2.

4根據液壓泵類型選擇20-110 5.2.5工作介質黏度的選擇20-110 5.2.6工作介質污染度等級的確定20-110 5.2.7其他要求20-111 5.3工作介質的使用20-111 5.3.1污染控制20-111 5.3.2過濾20-112 5.3.3補充工作介質20-112 5.3.4更換工作介質20-112 5.3.5工作介質的維護20-112 5.3.6工作介質的檢測20-112 5.3.6.1工作介質理化性能檢測20-112 5.3.6.2工作介質污染度檢測20-113 5.3.7安全與環保20-113 5.4工作介質的貯存20-113 5.5工作介質廢棄處理20-113 第

6章 液壓泵 6.1液壓泵的分類20-114 6.2液壓泵的主要技術參數及計算公式20-114 6.2.1液壓泵的主要技術參數20-114 6.2.2液壓泵的常用計算公式20-115 6.3液壓泵的技術性能和參數選擇20-115 6.4齒輪泵20-116 6.4.1齒輪泵的工作原理及主要結構特點20-116 6.4.2齒輪泵拆裝方法、使用注意事項20-117 6.4.3齒輪泵產品20-118 6.4.3.1齒輪泵產品技術參數總覽20-118 6.4.3.2CB型齒輪泵20-118 6.4.3.3CB-B型齒輪泵20-120 6.4.3.4CBF-E型齒輪泵20-122 6.4.3.5CBF-F

型齒輪泵20-124 6.4.3.6CBG型齒輪泵20-125 6.4.3.7P系列齒輪泵20-129 6.4.3.8NB型內嚙合齒輪泵20-131 6.4.3.9三聯齒輪泵20-135 6.4.3.10恒流齒輪泵20-137 6.4.3.11複合齒輪泵20-137 6.4.3.12GPY系列齒輪泵20-139 6.5葉片泵產品20-139 6.5.1葉片泵的工作原理及主要結構特點20-139 6.5.2葉片泵產品20-141 6.5.2.1葉片泵產品技術參數概覽20-141 6.5.2.2YB型、YB1型葉片泵20-141 6.5.2.3YB-※車輛用葉片泵20-144 6.5.2.4PV2

R型葉片泵20-144 6.5.2.5PFE型柱銷式葉片泵20-149 6.5.2.6YBX型限壓式變數葉片泵20-154 6.5.2.7V4型變數葉片泵20-158 6.6柱塞泵產品20-160 6.6.1柱塞泵的工作原理及主要結構特點20-160 6.6.2柱塞泵的拆裝方法和注意事項20-162 6.6.3柱塞泵產品20-162 6.6.3.1柱塞泵產品技術參數概覽20-162 6.6.3.2CY14-1B型斜盤式軸向柱塞泵20-163 6.6.3.3A2F型柱塞泵20-166 6.6.3.4ZB型斜軸式軸向柱塞泵20-171 6.6.3.5JB型徑向柱塞泵20-172 6.6.3.6A1

0V型軸向柱塞泵20-174 6.6.3.7RK型超高壓徑向柱塞泵20-178 6.6.3.8SB型手動泵20-179 第7章 液壓馬達 7.1液壓馬達的分類20-180 7.2液壓馬達的主要參數及計算公式20-180 7.2.1主要參數20-180 7.2.2計算公式20-181 7.2.3液壓馬達主要技術參數概覽20-181 7.3液壓馬達的結構特點20-182 7.4齒輪馬達20-183 7.4.1外嚙合齒輪馬達20-184 7.4.1.1GM5型齒輪馬達20-184 7.4.1.2CM-C型齒輪馬達20-186 7.4.1.3CM-G4型齒輪馬達20-187 7.4.1.4CM-D型

齒輪馬達20-188 7.4.1.5CMZ型齒輪馬達20-189 7.4.1.6CMW型齒輪馬達20-189 7.4.1.7CMK型齒輪馬達20-190 7.4.1.8CM-F型齒輪馬達20-191 7.4.1.9CB-E型齒輪馬達20-192 7.4.2擺線液壓馬達20-193 7.4.2.1BYM型齒輪馬達20-193 7.4.2.2BM-C/D/E/F型擺線液壓馬達20-194 7.5葉片馬達20-197 7.5.1YM型液壓馬達20-197 7.5.1.1YM型中壓液壓馬達20-197 7.5.1.2YM型中高壓液壓馬達20-199 7.5.1.3YM※型低速大扭矩葉片馬達20-200

7.5.2BMS、BMD型葉片擺動馬達20-202 7.6柱塞馬達20-203 7.6.1斜盤式軸向柱塞式馬達20-203 7.6.1.1ZM、XM型柱塞馬達20-204 7.6.1.2HTM(SXM)型雙斜盤軸向柱塞馬達20-205 7.6.1.3PMFBQA型輕型軸向柱塞馬達20-209 7.6.2斜軸式軸向柱塞馬達20-212 7.6.2.1A2F型斜軸式軸向柱塞馬達20-212 7.6.2.2A6V型斜軸式變數馬達20-213 7.6.3徑向柱塞馬達20-214 7.6.3.1NJM型柱塞馬達20-214 7.6.3.21JMD型柱塞馬達20-218 7.6.3.3JM※系列徑向柱塞

馬達20-219 7.6.4球塞式液壓馬達20-227 7.6.4.1QJM型徑向球塞馬達20-227 7.6.4.2QJM型帶制動器液壓馬達20-231 7.6.4.3QKM型液壓馬達20-237 7.7曲軸連杆式徑向柱塞馬達20-240 7.8液壓馬達的選用20-240 7.9擺動液壓馬達20-241 7.9.1擺動液壓馬達的分類20-241 7.9.2擺動液壓馬達產品20-242 7.9.2.1YMD型單葉片擺動馬達20-242 7.9.2.2YMS型雙葉片馬達20-243 7.9.3擺動液壓馬達的選擇原則20-245 第8章 液壓缸 8.1液壓缸的類型20-246 8.2液壓缸的基本

參數20-247 8.3液壓缸的安裝方式20-250 8.4液壓缸的主要結構、材料及技術要求20-256 8.4.1缸體和缸蓋的材料及技術要求20-256 8.4.2缸體端部連接形式20-257 8.4.3活塞20-262 8.4.3.1活塞材料及尺寸和公差20-262 8.4.3.2常用的活塞結構形式20-262 8.4.3.3活塞的密封20-262 8.4.4活塞杆20-266 8.4.5活塞杆的導向、密封和防塵20-269 8.4.5.1導向套的材料和技術要求20-269 8.4.5.2活塞杆的密封20-270 8.4.5.3活塞杆的防塵圈20-272 8.4.6液壓缸的緩衝裝置20-2

73 8.4.7液壓缸的排氣裝置20-273 8.5液壓缸的設計計算20-274 8.5.1液壓缸的設計計算20-274 8.5.2液壓缸性能參數的計算20-275 8.5.3液壓缸主要幾何參數的計算20-277 8.5.4液壓缸結構參數的計算20-279 8.5.5液壓缸的連接計算20-282 8.5.6活塞杆穩定性驗算20-285 8.6液壓缸標準系列20-285 8.6.1工程液壓缸系列20-285 8.6.2冶金設備用標準液壓缸系列20-294 8.6.2.1YHG1型冶金設備標準液壓缸20-294 8.6.2.2ZQ型重型冶金設備液壓缸20-302 8.6.2.3JB系列冶金設備液壓

缸20-307 8.6.2.4YG型液壓缸20-311 8.6.2.5UY型液壓缸20-318 8.6.3車輛用液壓缸系列20-324 8.6.3.1DG型車輛液壓缸20-324 8.6.3.2G※型液壓缸20-327 8.6.4重載液壓缸20-329 8.6.4.1CD/CG型液壓缸20-329 8.6.4.2CG250、CG350等速重載液壓缸尺寸20-343 8.6.5輕載拉杆式液壓缸20-346 8.6.6帶接近開關的拉杆式液壓缸20-354 8.6.7伸縮式套筒液壓缸20-355 8.6.8感測器內置式液壓缸20-357 8.7液壓缸的加工工藝與拆裝方法、注意事項20-358 8.8

液壓缸的選擇指南20-362 第9章 液壓控制閥 9.1液壓控制閥的分類20-366 9.1.1按照液壓閥的功能和用途進行分類20-366 9.1.2按照液壓閥的控制方式進行分類20-366 9.1.3按照液壓閥控制信號的形式進行分類20-366 9.1.4按照液壓閥的結構形式進行分類20-367 9.1.5按照液壓閥的連接方式進行分類20-367 9.2液壓控制元件的性能參數20-368 9.3壓力控制閥20-368 9.3.1溢流閥20-368 9.3.1.1普通溢流閥20-368 9.3.1.2電磁溢流閥20-372 9.3.1.3卸荷溢流閥20-373 9.3.2減壓閥20-373

9.3.3順序閥20-376 9.3.4溢流閥、減壓閥、順序閥的綜合比較20-379 9.3.5壓力繼電器20-379 9.3.6典型產品20-381 9.3.6.1直動型溢流閥及遠程調壓閥20-381 9.3.6.2先導型溢流閥、電磁溢流閥20-385 9.3.6.3卸荷溢流閥20-388 9.3.6.4減壓閥20-392 9.3.6.5順序閥20-400 9.3.6.6壓力繼電器20-404 9.4流量控制閥20-408 9.4.1節流閥及單向節流閥20-408 9.4.2調速閥及單向調速閥20-411 9.4.3溢流節流閥20-415 9.4.4分流集流閥20-415 9.4.5典型產品

20-416 9.4.5.1節流閥20-416 9.4.5.2調速閥20-419 9.4.5.3分流集流閥(同步閥)20-425 9.5方向控制閥20-428 9.5.1方向控制閥的工作原理和結構20-428 9.5.2普通單向閥20-431 9.5.3液控單向閥20-432 9.5.4電磁換向閥20-436 9.5.5電液換向閥20-443 9.5.6其他類型的方向閥20-450 9.5.7典型產品20-453 9.5.7.1單向閥20-453 9.5.7.2液控單向閥20-456 9.5.7.3電磁換向閥20-460 9.5.7.4電液換向閥20-470 9.5.7.5手動換向閥和行程換向

閥20-475 9.6多路換向閥20-482 9.6.1多路換向閥工作原理、典型結構及性能20-482 9.6.2產品介紹20-485 9.6.2.1ZFS型多路換向閥20-485 9.6.2.2ZFS-※※H型多路換向閥20-487 9.6.2.3DF型多路換向閥20-488 9.6.2.4CDB型多路換向閥20-489 9.7疊加閥20-491 9.7.1疊加閥工作原理、典型結構及性能20-491 9.7.2產品介紹20-493 9.8插裝閥20-503 9.8.1插裝閥的工作原理和結構20-504 9.8.2插裝閥的典型組件20-506 9.8.3插裝閥的基本回路20-510 9.8.4

插裝閥典型產品20-511 9.8.4.1力士樂系列插裝閥產品(L系列)20-511 9.8.4.2威格士系列插裝閥20-529 9.9液壓閥的清洗和拆裝20-536 9.10液壓控制元件的選型原則20-537 9.11液壓控制裝置的集成20-538 9.11.1液壓控制裝置的板式集成20-538 9.11.2液壓控制裝置的塊式集成20-542 9.11.3液壓控制裝置的疊加閥式集成20-547 9.11.4液壓控制裝置的插入式集成20-549 9.11.5液壓控制裝置的複合式集成20-550 第10章 液壓輔件與液壓泵站 10.1蓄能器20-551 10.1.1蓄能器的種類及特點20-55

1 10.1.2蓄能器在系統中的應用20-552 10.1.3各種蓄能器的性能及用途20-552 10.1.4蓄能器的容量計算20-553 10.1.5蓄能器的選擇20-553 10.1.6蓄能器產品20-553 10.1.6.1NXQ型囊式蓄能器20-553 10.1.6.2NXQ型囊式蓄膠囊20-555 10.1.6.3HXQ型活塞式蓄能器20-556 10.1.6.4GXQ型隔膜式蓄能器20-557 10.1.6.5GLXQ型管路式蓄能器20-558 10.1.6.6CQP型非隔離式蓄能器(儲氣罐)20-559 10.1.6.7囊式蓄能器站20-560 10.1.6.8活塞式蓄能器站及氮

氣瓶組20-561 10.1.7蓄能器附件20-562 10.1.7.1CQJ型蓄能器充氮工具20-562 10.1.7.2CPU型蓄能器充氮工具20-563 10.1.7.3CDZs-D1型充氮車(氮氣充壓裝置)20-564 10.1.7.4AQF型蓄能器安全球閥20-566 10.1.7.5AJF型蓄能器截止閥20-567 10.1.7.6AJ型蓄能器控制閥組20-568 10.1.7.7QFZ型蓄能器安全閥組20-570 10.1.7.8QF-CR型蓄能器氣體安全閥20-572 10.1.7.9QXF型蓄能器充氣閥20-572 10.1.7.10蓄能器固定組件20-573 10.1.7.

11蓄能器托架20-574 10.1.7.12蓄能器卡箍20-575 10.2篩檢程式20-575 10.2.1篩檢程式的主要性能參數20-576 10.2.2篩檢程式的名稱、用途、安裝、類別、形式及效果20-576 10.2.3推薦液壓系統的清潔度和過濾精度20-577 10.2.4篩檢程式的選擇和計算20-577 10.2.5篩檢程式產品20-578 10.2.5.1WF型吸油濾油器20-578 10.2.5.2WR型吸油濾油器20-578 10.2.5.3WU、XU型吸油濾油器20-579 10.2.5.4ISV型管路吸油篩檢程式20-580 10.2.5.5TF型箱外自封式吸油篩檢程式

20-582 10.2.5.6TRF型吸回油篩檢程式20-585 10.2.5.7GP、WY型磁性回油篩檢程式20-587 10.2.5.8RFA型微型直回式回油篩檢程式20-589 10.2.5.9SRFA型雙筒微型直回式回油篩檢程式20-591 10.2.5.10XNL型箱內回油篩檢程式20-594 10.2.5.11ZU-H、QU-H型壓力管路篩檢程式20-596 10.3熱交換器20-603 10.3.1冷卻器的種類及特點20-603 10.3.2冷卻器的選擇及計算20-603 10.3.3冷卻器產品的性能和規格尺寸20-604 10.3.4電磁水閥20-616 10.3.5GL型冷卻

水篩檢程式20-617 10.3.6加熱器20-617 10.4液壓站20-619 10.4.1液壓站的結構形式20-619 10.4.2典型液壓站產品20-620 10.4.3油箱20-622 10.5溫度儀錶20-624 10.5.1溫度錶(計)20-624 10.5.1.1WS※型雙金屬溫度計20-624 10.5.1.2WTZ型溫度計20-624 10.5.2WTYK 型壓力式溫度控制器20-624 10.5.3WZ※型溫度感測器20-624 10.6壓力儀錶20-624 10.6.1Y系列壓力錶20-624 10.6.2YTXG型磁感式電接點壓力錶20-624 10.6.3Y※TZ型

遠程壓力錶20-624 10.6.4BT型壓力錶20-624 10.6.5壓力錶開關20-624 10.6.5.1KF型壓力錶開關20-624 10.6.5.2AF6E型壓力錶開關20-624 10.6.5.3MS型六點壓力錶開關20-624 10.6.6測壓、排氣接頭及測壓軟管20-624 10.6.6.1PT型測壓排氣接頭20-624 10.6.6.2HF型測壓軟管20-624 10.7空氣濾清器20-624 10.7.1QUQ型空氣濾清器20-624 10.7.2EF型空氣篩檢程式20-624 10.7.3PFB型增壓式空氣濾清器20-624 10.8液位儀錶20-624 10.8.1Y

WZ型液位計20-624 10.8.2CYW型液位液溫計20-624 10.8.3YKZQ型液位控制器20-624 10.9流量儀錶20-624 10.9.1LC12型橢圓齒輪流量計20-624 10.9.2LWGY型渦輪流量感測器20-624 10.10常用閥門20-624 10.10.1高壓球閥20-624 10.10.1.1YJZQ型高壓球閥20-624 10.10.1.2Q21N型外螺紋球閥20-624 10.10.2JZFS系列高壓截止閥20-624 10.10.3DD71X型開閉發信器蝶閥20-624 10.10.4D71X-16對夾式手動蝶閥20-624 10.10.5Q11F-

16型低壓內螺紋直通式球閥20-624 10.11E型減震器20-624 10.12KXT型可曲撓橡膠接管20-624 10.13NL型內齒形彈性聯軸器20-625 10.14管路20-625 10.14.1管路的計算20-625 10.14.2膠管的選擇及注意事項20-625 10.15管接頭20-625 10.15.1金屬管接頭O形圈平面密封接頭20-625 10.15.2錐密封焊接式管接頭20-625 10.15.3卡套式管接頭規格20-625 10.15.4擴口式管接頭規格20-625 10.15.5錐密封焊接式方接頭20-625 10.15.6液壓軟管接頭20-625 10.15.7

快換接頭20-625 10.15.8旋轉接頭20-625 10.15.9螺塞20-625 10.15.10法蘭20-625 10.15.11管夾20-625 10.15.11.1鋼管夾20-625 10.15.11.2塑膠管夾20-625 第11章 液壓控制系統概述 11.1液壓傳動系統與液壓控制系統的比較20-626 11.2電液伺服系統和電液比例系統的比較20-628 11.3液壓控制系統的組成及分類20-628 11.4液壓控制系統的基本概念20-631 11.5液壓控制系統的基本特性20-633 11.5.1電液位置控制系統的基本特性20-635 11.5.2電液速度控制系統的基本特

性20-638 11.6液壓控制系統的特點及其應用20-639 11.6.1液壓控制系統的特點20-639 11.6.2液壓控制系統的應用20-640 第12章 液壓伺服控制系統 12.1液壓伺服控制系統的組成和工作原理20-646 12.2電液伺服閥20-648 12.2.1典型電液伺服閥結構20-653 12.2.2電液伺服閥的基本特性及其性能參數20-657 12.2.3電液伺服閥線圈接法20-661 12.2.4電液伺服閥使用注意事項20-662 12.2.5電液伺服閥故障現象和原因20-663 12.3伺服放大器20-665 12.4電液伺服系統設計20-667 12.4.1全面理

解設計要求20-667 12.4.2擬訂控制方案、繪製系統原理圖20-667 12.4.3動力元件的參數選擇20-668 12.4.4液壓系統固有頻率對加速和制動程度的限制20-675 12.4.5伺服閥選擇注意事項20-675 12.4.6執行元件的選擇20-676 12.4.7回饋感測器的選擇20-677 12.4.8確定系統的方塊圖20-679 12.4.9系統靜動態品質分析及確定校正特性20-679 12.4.10模擬分析20-679 12.5電液伺服系統應用舉例20-682 12.5.1力、壓力伺服系統應用實例20-683 12.5.2流量伺服系統應用實例20-690 12.5.3位

置系統應用實例20-691 12.5.4伺服系統液壓參數的計算實例20-706 12.6主要電液伺服閥產品20-713 12.6.1國內電液伺服閥主要產品20-713 12.6.1.1雙噴嘴擋板力回饋電液伺服閥20-713 12.6.1.2雙噴嘴擋板電回饋(FF109、QDY3、QDY8、DYSF型)電液伺服閥20-715 12.6.1.3動圈式滑閥直接回饋式(YJ、SV、QDY4型)、滑閥直接位置回饋式(DQSF-1型)電液伺服閥20-716 12.6.1.4動圈力綜合式壓力伺服閥(FF119)、雙噴嘴-擋板噴嘴壓力回饋式伺服閥(DYSF-3P)、P-Q型伺服閥(FF118)、射流管力回饋伺

服閥(CSDY、FSDY、DSDY、SSDY)20-717 12.6.1.5動圈力式伺服閥(SV9、SVA9)20-718 12.6.1.6動圈力式伺服閥(SVA8、SVA10)20-719 12.6.2國外主要電液伺服閥產品20-720 12.6.2.1雙噴嘴力回饋式電液伺服閥(MOOG)20-720 12.6.2.2雙噴嘴力回饋式電液伺服閥(DOWTY、SM4)20-721 12.6.2.3雙噴嘴力回饋式電液伺服閥(MOOG D761)和電回饋式電液伺服閥(MOOG D765)20-722 12.6.2.4直動電回饋式伺服閥(DDV)MOOG D633及D634系列20-724 12.6.

2.5電回饋三級伺服閥MOOG D791和D792系列20-725 12.6.2.6EMG伺服閥SV1-1020-727 12.6.2.7MOOG系列電回饋伺服閥20-729 12.6.2.8伺服射流管電回饋高回應二級伺服閥MOOG D661 GC系列20-732 12.6.2.9射流管力回饋Abex和射流偏轉板力回饋伺服閥MOOG26系列20-735 12.6.2.10博世力士樂(Bosch Rexroth)雙噴嘴擋板機械(力)和/或電回饋二級伺服閥4WS(E)2EM6-2X、4WS(E)2EM(D)10-5X、4WS(E)2EM(D)16-2X和電回饋三級伺服閥4WSE3EE20-735

12.6.3電液伺服閥的外形及安裝尺寸20-742 12.6.3.1FF101、FF102、MOOG30和DOWTY30型電液伺服閥外形及安裝尺寸20-742 12.6.3.2FF102、YF7、MOOG31、MOOG32、DOWTY31和DOWTY32型伺服閥外形及安裝尺寸20-742 12.6.3.3FF113、YFW10和MOOG72型電液伺服閥外形及安裝尺寸20-743 12.6.3.4FF106A、FF108和FF119型伺服閥外形及安裝尺寸20-744 12.6.3.5FF106、FF130、YF13、MOOG35和MOOG34型電液伺服閥外形及安裝尺寸20-745 12.6.3.

6QDY系列電液伺服閥外形及安裝尺寸20-745 12.6.3.7FF131、YFW06、QYSF-3Q、DOWTY45514659和MOOG78型伺服閥外形及安裝尺寸20-746 12.6.3.8FF109和DYSF-3G-111型電回饋三級閥外形及安裝尺寸20-747 12.6.3.9SV(CSV)和SVA型電液伺服閥外形及安裝尺寸20-748 12.6.3.10YJ741、YJ742和YJ861型電液伺服閥外形及安裝尺寸20-748 12.6.3.11CSDY和Abex型電液伺服閥外形及安裝尺寸20-749 12.6.3.12MOOG760、MOOGG761和MOOGG631型電液伺服閥

外形及安裝尺寸20-750 12.6.3.13MOOG D633、D634系列直動式電液伺服閥外形及安裝尺寸20-751 12.6.3.14MOOG D791和D792型電回饋三級閥外形及安裝尺寸20-752 12.6.3.15MOOG D662~D665系列電液伺服閥外形及安裝尺寸20-753 12.6.3.16博世力士樂電回饋三級閥4WSE3EE(16、25、32)外形及安裝尺寸20-754 12.7伺服液壓缸產品20-755 12.7.1US系列伺服液壓缸20-755 12.7.2海特公司伺服液壓缸20-756 12.7.3REXROTH公司伺服液壓缸20-758 12.7.4MOOG公

司伺服液壓缸20-759 12.7.5ATOS公司伺服液壓缸20-761 12.8液壓伺服系統設計禁忌20-762 12.9液壓伺服系統故障排除20-763 第13章 電液比例控制系統 13.1電液比例控制系統的組成和工作原理20-767 13.2比例電磁鐵20-770 13.3比例放大器20-771 13.4電液比例壓力閥20-791 13.5電液比例流量閥20-797 13.6電液比例方向閥20-801 13.7電液比例壓力流量複合閥20-808 13.8負載壓力補償用壓力補償器20-808 13.9比例控制裝置的典型曲線20-810 13.10比例控制系統典型原理圖20-814 13.

11閉環控制系統的分析方法20-829 13.12比例閥的選用20-831 13.13國內主要比例閥產品20-834 13.13.1BQY-G型電液比例三通調速閥20-834 13.13.2BFS和BFL比例方向流量閥20-834 13.13.3BY※型比例溢流閥20-834 13.13.43BYL型比例壓力流量複合閥20-835 13.13.54BEY型比例方向閥20-835 13.13.6BYY型比例溢流閥20-836 13.13.7BJY型比例減壓閥20-836 13.13.8DYBL和DYBQ型比例節流閥20-836 13.13.9BPQ型比例壓力流量複合閥20-837 13.13.1

04B型比例方向閥20-837 13.13.114WRA型電磁比例方向閥20-838 13.13.124WRE型電磁比例方向閥20-839 13.13.134WRZH型電液比例方向閥20-840 13.13.14DBETR型比例壓力溢流閥20-842 13.13.15DBE/DBEM型比例溢流閥20-843 13.13.163DREP6三通比例壓力控制閥20-844 13.13.17DRE/DREM型比例減壓閥20-844 13.13.18ZFRE6型二通比例調速閥20-845 13.13.19ZERE※型二通比例調速閥20-847 13.13.20ED型比例遙控溢流閥20-848 13.13

.21EB型比例溢流閥20-848 13.13.22ERB型比例溢流減壓閥20-849 13.13.23EF(C)G型比例(帶單向閥)流量閥20-849 13.14國外主要比例閥產品概覽20-850 13.14.1BOSCH比例溢流閥(不帶位移控制)20-850 13.14.2BOSCH比例溢流閥和線性比例溢流閥(帶位移控制)20-851 13.14.3BOSCH NG6帶集成放大器比例溢流閥20-852 13.14.4BOSCH NG10比例溢流閥和比例減壓閥(帶位移控制)20-853 13.14.5BOSCH NG6三通比例減壓閥(不帶/帶位移控制)20-854 13.14.6BOSCH

NG6、NG10比例節流閥(不帶位移控制)20-855 13.14.7BOSCH NG6、NG10比例節流閥(帶位移控制)20-856 13.14.8BOSCH NG10帶集成放大器比例節流閥(帶位移控制)20-857 13.14.9BOSCH比例流量閥(帶位移控制及不帶位移控制)20-858 13.14.10BOSCH不帶位移感測器比例方向閥20-860 13.14.11BOSCH比例方向閥(帶位移控制)20-861 13.14.12BOSCH帶集成放大器比例方向閥20-862 13.14.13BOSCH比例控制閥20-863 13.14.14BOSCH插裝式比例節流閥20-866 13.1

4.15Atos主要比例閥20-867 13.14.16Vickers主要比例閥20-868 13.14.16.1KDG3V、KDG4V比例方向閥20-868 13.14.16.2K(A)DG4V-3,K(A)TDG4V-3比例方向閥20-875 參考文獻20-881  

引擎控制參數之節能效益分析

為了解決渦輪 增 壓 車 注意事項的問題,作者洪圃寬 這樣論述:

本文以一具1.5升汽油缸內直噴渦輪增壓引擎為實驗目標引擎,針對特定運轉區間進行原引擎測試,接著分別調整三項不同的引擎控制參數以進行引擎制動燃油消耗率最佳化實驗,包含點火正時、可變汽門正時、渦輪洩壓閥開度,以得到各自制動燃油消耗率圖與制動污染排放量圖。接著透過MATLAB/Simulink建立整車動態模型,依據特定之行車型態,計算整車行駛所需要的燃油消耗與產生的廢氣排放,並利用各個引擎控制參數進行最佳化策略設計,本文建立一包含制動燃油消耗率及制動污染排放量的成本函數,並針對不同引擎運轉區間進行原引擎設定與三項引擎控制參數設定的成本函數計算,以成本函數值最小的設定做為該區間的局部最佳化策略,再由

這些局部最佳化策略組合得到全域最佳化策略。並探討原引擎、各引擎控制參數及最佳化策略後的燃油經濟性差異,同時也分析整車的污染排放狀況。模擬結果顯示,原引擎經各項引擎控制參數調整後,燃油經濟性均有改善。透過最佳化策略調整後,燃油經濟性有更多改善量18.5%,CO及HC之排放量都有減少,而NOx排放量與原引擎相同。

柴油機故障快速診斷與維修要點

為了解決渦輪 增 壓 車 注意事項的問題,作者母忠林(主編) 這樣論述:

本書采用圖、文、表相結合的方式,歸納總結了各類柴油機常見故障的現場診斷要點、現場維修要點及應急處理要點等專業技術知識,並講解了柴油機關鍵部位零部件的維修技術。主要內容包括:柴油機維修服務綜合實用技術、常見途中故障診斷與維修、潤滑系統常見故障診斷與維修、溫度異常故障診斷與維修、燃油系統常見故障診斷與維修、配氣機構常見故障診斷與維修、曲柄連桿機構常見故障診斷與維修、增壓系統常見故障診斷與維修、電控柴油機燃油系統檢修要點、運行途中故障應急處理技術等。本書可為柴油機行業維修服務人員、操作駕駛人員了解並掌握柴油機故障診斷和維修知識提供幫助,也可供高等院校相關專業師生學習參考。 第1章

柴油機維修服務綜合實用技術11.1氣門間隙的檢查與調整11.2機械柱塞式噴油系統的檢查與調整91.3單體泵燃油系統的檢測要點221.4VE分配泵燃油系統的檢查與調整261.5PT泵柴油機噴油正時的檢查與調整311.6柴油機實用綜合檢測技術37第2章 常見途中故障診斷與維修402.1啟動故障的快速診斷402.1.1啟動困難故障的快速診斷412.1.2不能啟動故障的快速診斷412.1.3冷機啟動困難故障的快速診斷422.1.4熱機啟動困難故障的快速診斷432.1.5啟動故障案例442.2排煙異常故障的快速診斷462.2.1排氣冒黑煙故障的快速診斷472.2.2冒藍煙故障的快速診斷512.2.3排氣

冒白煙故障的快速診斷522.3偶發性動力不足故障的快速診斷542.3.1進、排氣系統導致柴油機動力不足時的診斷與處理542.3.2油路系統導致柴油機動力不足故障的診斷與處理582.4熄火異常故障的快速診斷622.4.1自動熄火故障的診斷與處理622.4.2不能熄火故障的診斷與處理66第3章 潤滑系統常見故障診斷與維修693.1潤滑系統常見故障診斷與處理693.1.1機油耗量過大故障的診斷與處理703.1.2機油中有水故障的診斷與處理713.1.3機油壓力異常故障713.1.4機油溫度過高故障的診斷與處理753.1.5機油過快變質的原因分析與處理763.1.6機油中有柴油故障的診斷與處理783.

1.7機油濾清器被吸癟故障的原因及處理783.2曲軸箱廢氣壓力過大故障的診斷與處理793.2.1曲軸箱廢氣壓力過大故障的綜合因素分析793.2.2缸套組件與壓力氣體導致曲軸箱廢氣壓力過大的差別823.3潤滑系統使用維修要點823.3.1機油的選擇和更換823.3.2機油泵的裝配要點833.3.3機油濾清器的更換843.3.4機油散熱器故障檢修843.3.5機油更換時間直接觀察確定操作要點863.4燒(耗)機油故障案例88第4章 溫度異常故障診斷與維修904.1「過熱」運行故障的診斷與維修904.1.1「過熱」運行故障的綜合原因分析914.1.2「過熱」故障的診斷與處理934.1.3「過熱」故障

檢修案例944.2出現「過熱」故障時的緊急處理964.3「過冷」運行故障的診斷與排除974.4冷卻系統使用維修要點1004.4.1冷卻系統分類1004.1.2節溫器的檢修1004.4.3散熱器的檢修1024.4.4冷卻風扇的檢修1034.4.5冷卻液的綜合使用要求1064.5柴油機冷卻系統故障案例107第5章 燃油系統常見故障診斷與維修1095.1燃油系統常見故障的診斷與處理1095.1.1功率不足或大負荷作業自動停機1095.1.2大負荷運轉時冒黑煙較為嚴重1115.1.3啟動或加油時冒白煙1135.1.4機油越用越多1145.1.5排氣溫度過高且黑煙嚴重1145.1.6啟動困難或根本不能啟

動1155.1.7柴油機活塞經常出現「燒頂」現象1175.1.8啟動時經常有「放炮」聲1175.1.9燃油消耗量太大1185.1.10柴油機振動大1185.1.11「飛車」故障的診斷與處理1185.2轉速不穩故障的診斷與排除1195.2.1機械式噴油系統柴油機轉速不穩故障的診斷與處理1195.2.2低壓油路系統導致柴油機轉速不穩故障的原因分析與排除1235.2.3噴油器故障導致柴油機轉速不穩故障的原因分析與排除1235.2.4噴油泵因素導致柴油機轉速不穩故障的原因分析與排除1245.2.5故障案例1265.3VE泵柴油機供油不足故障的診斷與檢修1265.4機械式噴油系統拆卸與安裝要點1315.

4.1噴油泵的使用保養要點1315.4.2噴油泵的拆裝要求1325.4.3噴油器的拆裝要點1335.5機械式燃油噴射系統故障案例135第6章 配氣機構常見故障診斷與維修1386.1配氣機構常見故障的診斷與維修1386.1.1配氣機構常見故障的原因、診斷與排除1386.1.2配氣機構異響故障的診斷與判斷1406.2配氣機構使用維修要點1426.2.1配氣機構的安裝與調整要點1436.2.2配氣機構零部件的維修要點1476.2.3配氣機構故障的應急處理技術1506.3配氣機構故障案例150第7章 曲柄連桿機構常見故障診斷與維修1547.1曲柄連桿機構常見故障的診斷與維修1547.1.1曲軸故障的診

斷與處理1557.1.2柴油機非正常燒瓦故障的原因分析與處理1577.1.3連桿螺栓斷裂故障的原因分析與處理1597.1.4連桿彎曲變形故障的原因分析與處理1617.1.5活塞(環)缸套常見故障的診斷與維修1637.2曲柄連桿機構異響故障的診斷與維修1697.2.1塞環異響故障的診斷與處理1697.2.2曲軸主軸瓦異響故障的診斷與處理1707.2.3連桿軸瓦異響故障的診斷與處理1717.2.4活塞敲缸異響故障的診斷與處理1727.2.5活塞銷敲擊異響故障的診斷與處理1737.3曲軸的維修要點1747.3.1曲軸的檢測要點1747.3.2曲軸磨損后的修復1787.3.3曲軸的裝配要點1807.4

機體的維修要點1837.4.1柴油機機體的檢測1847.4.2氣缸體(機體)的修復1877.5氣缸套的維修要點1907.5.1氣缸套磨損的檢測1907.5.2氣缸套的修理1917.5.3薄壁(干式)缸套的拆卸、修理與安裝1917.5.4濕式氣缸套的安裝1937.6氣缸蓋的維修要點1947.6.1氣缸蓋翹曲度的測量1947.6.2氣缸蓋裂紋的檢查與修復1967.6.3氣門座圈的更換1987.6.4氣缸蓋的安裝要領2007.7氣缸墊的維修要點2037.8曲柄連桿機構故障案例205第8章 增壓系統常見故障診斷與維修2088.1渦輪增壓系統常見故障的診斷與處理2088.1.1進氣不足2088.1.2壓

氣機喘振2098.1.3增壓壓力不足2108.1.4增壓壓力過高2118.1.5渦輪增壓器有異常響聲2128.1.6增壓器超溫2128.1.7渦輪增壓器轉速降低2138.1.8壓氣機殼、渦輪機殼的氣窗向外噴機油2138.2渦輪增壓系統使用維修要點2138.2.1增壓系統的使用要點2138.2.2渦輪增壓器的檢修要點2148.2.3中冷器的維護保養要點2168.2.4增壓器的安裝要求2168.2.5進氣系統漏氣檢查2178.2.6進、排氣系統阻力檢查2178.2.7延長增壓器使用壽命的措施2178.3SCR系統的功能與使用要求2188.3.1SCR系統的組成2188.3.2SCR系統的使用注意事

項2198.4柴油機進、排氣系統故障案例219第9章 電控柴油機燃油系統檢修要點2249.1電控泵噴嘴燃油系統的檢修要點2249.1.1電控泵噴嘴燃油系統的組成及工作原理2249.1.2泵噴嘴燃油系統的檢修2289.1.3電控泵噴嘴電磁閥的檢修231 9.2高壓共軌燃油系統主要零部件的檢修2339.2.1電控高壓共軌燃油噴射系統的組成2339.2.2電控共軌燃油系統高壓油泵的檢修2359.2.3共軌(管)的拆卸與安裝2399.2.4燃油進油計量電磁閥的使用與維修2409.3電控噴油器的檢修要點2459.3.1電控噴油器的結構及拆裝2459.3.2噴油器電磁閥的結構及檢修2479.4電控分配泵燃

油噴射系統的檢修2509.4.1結構簡介2509.4.2電控VE泵的維修2519.5電控柴油機故障案例集錦258……第10章 運行途中故障應急處理技術270參考文獻278

車輛柴油引擎四期及五期排放空氣污染物差異性研究

為了解決渦輪 增 壓 車 注意事項的問題,作者劉振裕 這樣論述:

中文摘要我國車輛密度高達599輛/Km2,遠高於其他國家。依環保署「101年全國柴油引擎動力計排煙檢測計畫期末報告」指出,路邊排煙攔車檢測,不合格率達34.2%。由此可見,全台灣的柴油引擎車輛排煙不良率,約佔三分之一左右。以至柴油引擎車輛排放廢氣是造成空氣汙染的重要成因之一,況且污染車輛難以及時被發現。這些都值得我們深入探討及改進,如何減少車輛廢氣排放的空氣汙染物總量,有效達到改善環境空氣品質的成效,是刻不容緩的課題。本研究主要目標為探討符合環保法規之四期及五期柴油引擎,在動力計測試下,針對柴油引擎四期及第五期所排放化學與毒性污染物之特性,瞭解對排放空氣污染物之影響(針對四期五期有無加裝燃

料系統排放差異性),對應其四期、五期不同的排放空氣污染物。測試車輛於不同溫度、轉速、馬力及檔位下,進行傳統空氣污染物(黑煙、CO、HC、NOX)及16種多環芳香烴碳氫化合物(Polycyclic Aromatic Hydrocarbons, PAHs)的量測,並於實際行駛特定里程後,量測上述空氣有毒污染物濃度,以明瞭其第四期及第五期柴油引擎排放污染物之情況,並針對其該等空氣污染物之排放進行探討。本研究結果發現,在不同溫度、馬力、轉速及轉速下,產生五期排放pm數據,跟四期排放pm數據,差距達到11.45μm,而在HC、NOX上也呈現有很大差距,都在0.121到1.50μm之間,而一氧化碳CO是在

測試中,差距是最小,在0.02到0.10μm之間,結果發現,不管在那個數據上,確實五期柴油引擎排放污染物,都比四期柴油引擎排放污染物減少。關鍵詞:柴油引擎、粒狀污染物PM、氮氧化物NOX、一氧化碳CO、碳氫化合物HC