機車發電機故障的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列各種有用的問答集和懶人包

機車發電機故障的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦繆鎮成,盧聖心,林士敦,何富國寫的 汽機車電錶原理與量測 最新版(第二版) 附MOSME行動學習一點通 和瑞佩爾(主編)的 新能源電動汽車混合動力汽車維修資料大全:國內品牌都 可以從中找到所需的評價。

另外網站[問題] 回充電壓異常,非整流器故障- 看板biker - 批踢踢實業坊也說明:前幾天發文詢問『回充電壓異常』得到的答案是整流器故障今天下班去材料行買 ... 推silvester963: 上次也壞過回充的線,機車行把發電機拆下來去重纏線 ...

這兩本書分別來自台科大 和化學工業所出版 。

國立成功大學 航空太空工程學系碩士在職專班 賴維祥所指導 徐榆鈞的 四行程內燃機用於混合動力系統之可行性研究 (2020),提出機車發電機故障關鍵因素是什麼,來自於四行程內燃機、混合動力系統、電動自行車、能量密度。

而第二篇論文國防大學 運籌管理學系 郭俊良所指導 劉文清的 應用關聯規則分析建構維修零附件耗用分析模型-船用 MTU 主機為例 (2017),提出因為有 資料探勘、關聯法則、故障維修、裝備妥善率的重點而找出了 機車發電機故障的解答。

最後網站機車電瓶沒電處理程序 - 座右銘則補充:第三步驟:如果發動引擎後,測量電瓶兩端電壓,低於電瓶電壓,極有可能整流器故障。 第四步驟:如果有現成的整流器換掉後再重新第二步驟;但沒有整流器也 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了機車發電機故障,大家也想知道這些:

汽機車電錶原理與量測 最新版(第二版) 附MOSME行動學習一點通

為了解決機車發電機故障的問題,作者繆鎮成,盧聖心,林士敦,何富國 這樣論述:

  所謂「工欲善其事,必先利其器」相關從業人員對於維修現代化汽機車皆不惜投下重金。然而在各式電子儀器中能完全充分運用的維修人員並不多見,有檢修設備卻無各製造廠之維修手冊及儀器的使用手冊而使其維修技術事倍功半大打折扣。所以必須使用多功能電錶才能有更精確的參考依据,在故障判斷上有所助益。相信讀者在使用本書時能有很大的收獲。

機車發電機故障進入發燒排行的影片

你是不是也曾經這樣…無預警的機車就沒電了…還是在最緊要的關頭,而且現在噴射的機車,連想踩發都不能踩…當下的心情,真的其能用"慘"來形容呀~

今天來開箱個帶有液晶螢幕顯示的電瓶~
電量不足的時候還會發出警示音喔~



佳騁Chrome Pro智能顯示機車膠體電池AWX7A-BS
■美國知名品牌,免維護膠體機車電池NO.1 
■亞馬遜最高 5 顆星評價,銷售排行前10名,銷量突破百萬顆 
■採用高成本德國膠體、電鍍銅端子(可看到兩個端子色澤光亮細緻),比市面使用鉛端子設計的同類產品,導電更快,加乘電池效能 
■全球獨創,智能警示系統 ,電壓異常、容量不足時即自動發出鳴示音,再也不必擔心騎車時無預警的熄火,耽誤重要行程 
■獨家專利,電池自帶液晶顯示屏,使用市面上其它機車電池時,都需另購電表機器及學習如何對電池測量電壓,但佳騁CP電池獨家專利電池本體就自帶電壓/量顯示,只要在螢幕鍵按一下即知電壓和電量,省錢省時省力簡易,不懂電機的或女性都能輕鬆操作
■獨特的添加膠體電解液技術取代傳統電解液,電池壽命與性能更佳,設計使用壽命大於3年(25°C),低自放電率,靜置不用時亦能保留電力 
■適應各種高低溫環境,極端氣候下,正常發揮電池性能 
■免維護,完全密封不漏液,抗震性強,安全可靠,安裝省時省力
■智能調控3模式,保證電池最低耗損外,電池一旦出現異常, 立刻發出警示音 
■泰國製造,非一般中國製造商品
■享1年保固(市面很多品牌是無保固的)
 (註:人為因素及車子本身電子及充電系統有問題或故障之情況除外) 若機車電子及充電系統(例整流器、發電機等)有問題或故障之情況下,會影響電池正常運作,此非電池本身的因素所致之情況,亦不屬保固範圍,建議安裝前您的愛車能定期於車行事先檢測,避免後續問題產生哦~

/彩盒採2層超厚瓦楞紙盒高保護力包裝,市面唯一最高標等,上下雙重保麗龍保護層,內裝另有夾鏈密封袋隔絕灰塵及防止電池刮傷,夾鏈袋另有特殊打洞處理,透氣防止過熱。詳細的中文商品說明書
/價格平價好入手,效能與功能較傳統加水電池更佳
/ 螢幕上的功能使用方式:PUSH鍵按一下:顯示電壓(ex12.xx~13.xx V),再按一下:使用天數:000,表示是全新未使用過,若有裝上機車發動後,才會開始跑計算天數,詳情可參閱使用說明書
/少數不肖廠商或車行,會以二手電池重新整理後以全新品價格再銷售給客人,客人根本無法得知是否被當冤大頭。但使用佳騁CP電池,因帶有使用天數顯示功能,消費者一鍵按下即可得知是否全新品,品質更有保障!

#機車電瓶
#智能電瓶
#豪邁125
#機車電池
#7號電池
#7號電瓶
#摩托車電池
#摩托車電瓶
#7A-BS
#光陽
#老車復活

●除了本影片所展示型號外,還有其它各類電池型號可供選擇,詳情可點下方賣場連結
▲蝦皮賣場: https://bit.ly/2UyJcGx
全系列商品: bit.ly/aw-shopee
佳騁CP粉專: https://www.facebook.com/chromepro.battery/

【戲劇.美食.旅遊.科技.3C.知識.開箱.生活】關注以下網址
●fb粉絲團(王子華King):http://www.facebook.com/king8.tw
●Youtube(小王子.TW):http://youtube.com/kingss232323
●IG(little.king.tw):http://www.instagram.com/little.king.tw/
●Blog:【王子的皇宮-戲劇人生】小演員-王子華の大生活
http://king8.pixnet.net/
●IG(king8.tw):http://www.instagram.com/king8.tw

四行程內燃機用於混合動力系統之可行性研究

為了解決機車發電機故障的問題,作者徐榆鈞 這樣論述:

本研究主要目的為建立四行程內燃機混合動力系統,並探討其應用於電動自行車續航力之可行性,本實驗將使用XY139F-7四行程引擎建立一套發電系統,並量測此引擎各油門值的功率及油耗,以此結果與純電力系統及純燃油系統進行比較。根據實驗結果,引擎於油門值60 %且負載電流於18.7 A時,產生輸出功率為646 W、比燃油消耗率為668.8 g/(kW·h),引擎熱效率為16.1 %、整體系統熱效率達7.9 %,此時比燃油消耗率及系統熱效率為最佳狀態;若比較混合動力系統與電池供應系統於相同重量情況下,以48 V、1000 W馬達規格做為負載假設,混合動力系統裝載1.45 L之燃油,將可使比能量高於純電池

系統,比能量為170.7 Wh/kg、航程時間為2小時46分54秒、航程距離85.6 km;在模擬混合動力與純燃油系統的怠速比對分析中,在相同燃油消耗5公升時,混合動力系統的航程距離 (163.8 km) 大於純燃油系統 (146.5 km) 。經研究結果可知此混合動力系統能保持較佳燃油效率,利用電池蓄電,即可使負載端有增程效果,因此吾人認為混合動力系統應用於電動自行車上為一可行方案。

新能源電動汽車混合動力汽車維修資料大全:國內品牌

為了解決機車發電機故障的問題,作者瑞佩爾(主編) 這樣論述:

本叢書分為國內品牌與國外品牌兩冊。本冊為國內品牌分冊,主要涉及的品牌車型有比亞迪(秦EV、宋EV、元EV、e5、e6、唐DM、宋DM、秦PHEV),北汽新能源(EC180/EC200/EC220/EC3、EU220/EU260/EU300/EU400/EU5、EV160/EV200、EX200/EX260/EX360),吉利(帝豪EV300/EV450、帝豪GSe、博瑞GE、帝豪HEV),江淮新能源(iEV4、iEV6E/ iEV6S、iEV7S),榮威(ERX5、Ei5、e550、ei6),眾泰(雲100、E200、芝麻E30),長安(逸動EV、奔奔EV、CS15 EV),奇瑞新能源(EQ1

、瑞虎3Xe、艾瑞澤7e),廣汽傳祺(GE3、GS4、GA5),長城(C30EV、魏派P8),東風風神(E70、E30L、A60),其他品牌(知豆D2,蔚來ES8,江鈴E200,雲度π3)。 編選資料主要包括以下幾個方面的內容:一是高壓部件的安裝位置、部件結構分解的資訊;二是高壓電氣部件介面端子分佈,接外掛程式端子針腳排列與功能定義及檢測資料;三是各控制系統的故障代碼含義與相關故障快速排除方法;四是各車型高壓系統電路圖,如電池管理系統電路、電機驅動控制電路、整車控制器電路、充電控制電路;五是高壓系統總成部件,如高壓電池包、驅動電機、車載充電機、DC-DC轉換器、變速器與減速器、電動空調系統等

關鍵技術參數;六是常用維護保養資料,如油液規格及用量、熔絲與繼電器盒資訊等。因數據繁多,限於篇幅,不同品牌車型只能擇其要點選錄。 該書全部資料來自汽車廠商及維修一線,真實準確,車型眾多,內容全面,可以多方面滿足產品研發,教學參考,維修查閱的資料需求。既可作為新能源汽車領域技術人員的工具書籍,也可以用作新能源汽車專業教學的輔助資料。 中德教育與科技合作促進中心(www.kfbtz.org),是德國法院註冊的公益協會,協會宗旨是促進和發展中德兩國在經濟、文化和學術方面的交流,致力於為廣大中德企業、政府以及高校提供在國際交流和創新培訓領域內的全方位服務,為中外企業發展提供跨文化

和法律諮詢,在中德兩國的教育、科技和文化交流領域發揮積極的促進作用。   羅本進,德國斯圖加特大學工學博士,中德教育與科技合作促進中心主席,全德華人機電工程學會副主席,德國汽車零部件企業前瞻開發部高級系統工程師。他多年來一直致力於混合動力系統、電驅動系統、全自動變速器及工業4.0的研究,具有豐富的實踐經驗。   劉晨光,卡爾斯魯厄理工學院應用電腦學博士,全德華人機電工程學會特聘專家,德國汽車系統供應商研發中心高級計算工程師。他多年來從事汽車變速器概念設計、類比模擬計算、產品資料管理、應用軟體設計實現、技術商務翻譯和專利管理工作。   王京晶,德國拜洛伊特大學企業管理博士,領導力和創新型組織培訓

專家、教練,世界經理人推薦書籍《GlobalizationofLeadershipDevelopment》作者,德國汽車企業銷售創新、銷售大資料及銷售培訓領域高級專案經理。劉光明,清華大學工學博士,德國亞琛工業大學碩士,全德華人機電工程學會特聘專家,德國汽車企業高級工程師。他在新能源汽車動力電池、能量管理與電驅動方面有長期的研究及實踐經驗。 第1章比亞迪新能源汽車001 1.1比亞迪秦EV(2017~)/ 002 1.1.1高壓控制模組介面分佈 / 002 1.1.2電動助力轉向系統電路與端子檢測 / 002 1.1.3電子駐車系統端子檢測 / 004 1.1.4安全氣囊系

統端子檢測 / 005 1.1.5智慧鑰匙系統端子檢測 / 006 1.1.6防盜系統端子檢測 / 007 1.1.7中控門鎖系統端子檢測 / 008 1.1.8電動空調系統端子檢測 / 009 1.1.9多媒體系統端子檢測 / 010 1.1.10多媒體系統外置功放端子檢測 / 011 1.1.11全景系統元件位置與電路 / 012 1.1.12全景系統端子檢測 / 014 1.2比亞迪宋EV(2017~)/ 015 1.2.1電池管理控制器端子檢測 / 015 1.2.2動力總成技術參數 / 016 1.2.3驅動電機旋變端子定義 / 017 1.2.4高壓控制模組介面分佈 / 017 1

.2.5電動空調系統端子檢測 / 017 1.3比亞迪元EV(2018~)/ 019 1.3.1高壓系統部件位置及原理 / 019 1.3.2高壓電池包位置與介面分佈 / 020 1.3.3電池管理控制器端子資料 / 022 1.3.4充電介面位置與端子定義 / 025 1.3.5創酷版高壓電控總成介面分佈 / 026 1.3.6高壓電控總成端子定義 / 026 1.3.7主控制器端子定義 / 029 1.3.8自動空調(空調與電池熱管理分開)端子檢測 / 030 1.3.9手動空調(空調與電池熱管理二合一)端子定義 / 032 1.3.10自動空調(空調與電池熱管理二合一)端子定義 / 03

4 1.4比亞迪e5(2016~)/ 035 1.4.1電池管理系統端子檢測 / 035 1.4.2高壓控制模組介面位置與端子定義 / 037 1.4.3主控制系統端子定義 / 040 1.4.4漏電感測器電路 / 042 1.5比亞迪e6(2016~)/ 042 1.5.1電池管理控制器端子檢測 / 042 1.5.2驅動電機控制器端子檢測 / 043 1.5.3多媒體系統(CD配置)電路 / 045 1.5.4多媒體系統CD主機端子檢測 / 046 1.5.5多媒體系統(DVD配置)端子檢測 / 047 1.6比亞迪唐DM PHEV(2016~)/ 052 1.6.1高壓電池包電路 / 0

52 1.6.2電池管理系統電路與端子檢測 / 054 1.6.3高壓配電箱端子檢測 / 057 1.6.4前驅電機控制器電路與端子檢測 / 057 1.6.5後驅電機控制器電路與端子定義 / 061 1.6.6全新一代唐DM BSG電機控制器端子定義 / 063 1.6.7全新一代唐DM前驅電機控制器端子檢測 / 064 1.6.8全新一代唐DM後驅電機控制器端子檢測 / 065 1.6.9全新一代唐DM整車控制器端子檢測 / 066 1.6.10全新一代唐DM電池管理控制器端子檢測 / 068 1.6.11全新一代唐DM高壓互鎖回路電路 / 070 1.6.12全新一代唐DM高壓配電箱端子

檢測 / 071 1.6.13全新一代唐DM車載充電機端子定義 / 071 1.6.14全新一代唐DM多媒體系統端子定義 / 072 1.7比亞迪宋DM PHEV(2017~)/ 078 1.7.1電池管理控制器端子檢測 / 078 1.7.2前驅電機控制器端子檢測 / 079 1.7.3後驅電機控制器端子檢測 / 080 1.7.4整車控制器端子檢測 / 081 1.8比亞迪秦PHEV(2014~)/ 082 1.8.1電池管理控制器端子檢測 / 082 1.8.2電池管理系統電路 / 082 1.8.3電池管理系統故障代碼 / 086 1.8.4充電系統故障代碼 / 092 1.8.5車載

充電電路 / 094 1.8.6驅動電機控制器端子檢測 / 094 1.8.7驅動電機控制器與DC總成電路 / 096 1.8.8驅動電機與DC-DC轉換系統故障代碼 / 098 1.8.9驅動電機控制系統故障代碼 / 098 1.8.10高壓配電箱端子檢測 / 100 1.8.11高壓配電箱電路 / 101 1.8.12P擋電機控制器電路 / 101 第2章北汽新能源汽車104 2.1北汽EC180/EC200/EC220/EC3(2017~)/ 105 2.1.1EC3高壓系統部件 / 105 2.1.2EC3電子動力單元電路 / 105 2.1.3EC3電子動力單元端子定義 / 105

2.1.4EC3驅動電機控制單元電路 / 107 2.1.5EC3驅動電機控制單元端子定義 / 107 2.1.6EC3整車控制系統電路 / 109 2.1.7EC3整車控制器端子定義 / 111 2.1.8高壓線束分佈 / 113 2.1.9高壓電路系統電路 / 113 2.1.10整車控制器安裝位置 / 113 2.2北汽EU220/EU260/EU300/EU400/EU5(2016~)/ 115 2.2.1EU5高壓線束分佈 / 115 2.2.2EU5電池管理與充電控制系統電路 / 115 2.2.3EU5電池管理系統端子定義 / 118 2.2.4EU5電機控制系統電路 / 12

0 2.2.5EU5電機控制器端子定義 / 121 2.2.6EU220/EU260電機控制系統端子定義 / 121 2.2.7高壓電池快換介面端子定義 / 123 2.2.8整車控制器端子定義 / 124 2.2.9整車控制系統電路 / 126 2.2.10EU5全車控制器安裝位置 / 130 2.3北汽EV160/EV200(2015~2016)/ 130 2.3.1高壓部件檢測方法 / 130 2.3.2充電機端子定義 / 132 2.3.3高壓線束總成端子定義 / 133 2.3.4高壓配電箱端子定義 / 133 2.3.5高壓互鎖連接線路 / 135 2.3.6驅動電機控制器端子定義

/ 135 2.4北汽EX200/EX260/EX360(2016~)/ 136 2.4.1電池管理控制器端子定義 / 136 2.4.2MCU低壓控制外掛程式端子定義 / 137 2.4.3PDU低壓控制外掛程式端子定義 / 139 2.4.4整車控制器端子定義 / 139 2.4.5空調控制器端子定義 / 141 2.4.6組合儀錶連接端子定義 / 143 2.4.7中控大屏連接端子定義 / 143 第3章吉利新能源汽車145 3.1帝豪EV300~EV450(2017~)/ 146 3.1.1動力電池系統部件位置與電路 / 146 3.1.2動力電池系統故障代碼 / 146 3.1.

3高壓配電系統部件位置與電路 / 150 3.1.4電機控制系統部件位置與電路 / 151 3.1.5電機控制器端子定義 / 154 3.1.6電機控制系統故障代碼 / 154 3.1.7高壓冷卻系統部件位置與控制原理 / 159 3.1.8充電系統部件位置與控制原理 / 160 3.1.9充電系統故障代碼 / 164 3.1.10減速器部件位置與控制原理 / 165 3.1.11車輛控制系統部件位置與控制原理 / 168 3.1.12車身控制模組端子資訊 / 172 3.1.13車輛控制單元故障代碼 / 174 3.1.14資料通信系統部件位置與控制原理 / 178 3.1.15空調系統部件

位置與控制原理 / 180 3.1.16自動空調控制器端子資訊 / 185 新能源汽車是指採用非常規的車用能源(即除汽油、柴油之外)作為動力來源(或使用常規的車用燃料、採用新型車載動力裝置),綜合車輛的動力控制和驅動方面的先進技術,形成的技術原理先進,具有新技術、新結構的汽車。 廣義上的新能源汽車包括純電動汽車(BEV,Battery Electric Vehicle)、增程插電式電動汽車(PHEV,Plug in Hybrid Electric Vehicle)(裝有小排量汽油發動機但行駛動力以電為主)、油電或油氣混合動力汽車(HEV,Hybrid Electric V

ehicle)、燃料電池電動汽車(PCEV,Fuel Cell Electric Vehicle)、氫發動機汽車、太陽能和其他新型能源汽車等。目前新能源汽車一般特指純電動汽車與插電增程式電動汽車。 純電動汽車顧名思義就是純粹靠電能驅動的車輛,不需要其他能量,如汽油、柴油等。它可以通過家用電源(普通插座)、專用充電樁或者在特定的充電場所進行充電,以滿足日常行駛需求。 廣義上的混合動力汽車(Hybrid Vehicle)是指車輛驅動系統由兩個或多個能同時運轉的單個驅動系統聯合組成的車輛,車輛的行駛功率依據實際的車輛行駛狀態由單個驅動系統單獨或共同提供。 通常所說的混合動力汽車,一般是指油電混

合動力汽車(HEV,Hybrid Electric Vehicle),即採用傳統的內燃機(柴油機或汽油機)和電動機作為動力源。 新能源汽車中的插電式混合動力電動汽車,是特指通過插電進行充電的混合動力汽車。一般需要專用的供電樁進行供電,在電能充足時,採用電動機驅動車輛,電能不足時,發動機會參與到驅動或者發電環節。 插電式混合動力汽車是可以在正常使用情況下,從非車載裝置中獲取電能,以滿足車輛一定的純電動續駛里程的混合動力汽車,可分為增程式和插電式。 增程式混合動力汽車是在純電動汽車的基礎上開發的電動汽車。之所以稱之為增程式混合動力汽車是因為車輛追加了增程器(傳統發動機加發電機),而為車輛追加

增程器的目的是進一步提升純電動汽車的續駛里程,使其能夠儘量避免頻繁地停車充電。 插電式混合動力汽車是由混合動力汽車進化而來的,它繼承了混合動力汽車的大部分特點,但把混合動力汽車的功率型電池替換為比容量(單位品質所包含的能量)更大的能量型電池,如此一來動力電池就有足夠的能量保證車輛可以在零排放、無油耗的純電動模式下行駛一定的距離。 從驅動的角度來看,增程式混合動力汽車無論是工作在純電動模式下還是增程模式下,其車輪始終由電動機獨立驅動,而插電式混合動力汽車如果工作在混合動力模式下,發動機會與電機一同參與到驅動車輪的行列(經動力耦合後)。 從系統選型的角度來說,增程式混合動力汽車必須是串聯式混

合動力形式,而插電式混合動力汽車可以是並聯式混合動力形式,也可以是混聯式混合動力形式。 燃料電池電動汽車是利用氫氣和空氣中的氧在催化劑的作用下在燃料電池中經電化學反應產生的電能作為主要動力源驅動的汽車。 隨著新能源電動汽車這一行業的興起,整個產業鏈的配套服務,相關電動汽車配件、服務元件的研發,教育產業中汽車新能源專業建設,以及電動汽車的售後技術支援,維修養護服務等都在尋找著屬於各自的機遇。在技術出版輸出方面,種類繁多的相關新能源汽車技術,電動汽車原理構造、維修與養護的圖書也數不勝數,但能夠提供對應車輛資料與技術資料的書籍卻很少。為此,筆者根據當前市場熱銷及電動汽車(除純電車型外還包括插電混

動與油電混動車型)保有量的排行,選取了數款國內外知名品牌新能源電動與混合動力車型,並集中整理了這些車型的技術資料,以滿足行業需求。 本套叢書分為國內品牌與國外品牌兩個分冊。本分冊為國內品牌分冊,主要涉及的品牌車型有比亞迪(秦EV、宋EV、元EV、e5、e6、唐DM PHEV、宋DM PHEV、秦PHEV),北汽新能源(EC180/EC200/EC220/EC3、EU220/EU260/EU300/EU400/EU5、EV160/EV200、EX200/EX260/EX360),吉利(帝豪EV300~EV450、帝豪GSe、博瑞GE PHEV、帝豪HEV),江淮新能源(iEV4、iEV6E/

iEV6S、iEV7S),榮威(ERX5、Ei5、e550、ei6),眾泰(雲100、E200、芝麻E30),長安(逸動EV、奔奔EV、CS15 EV),奇瑞新能源(EQ1EV、瑞虎3Xe、艾瑞澤7e PHEV),廣汽傳祺(GE3、GS4 PHEV、GA5 PHEV),長城(C30EV、魏派P8 PHEV),東風風神(E70、E30L、A60 EV),其他品牌(知豆D2、蔚來ES8、江鈴E200 EV、雲度π3)。 編選資料主要包括了以下幾個方面:一是高壓部件的安裝位置、部件結構分解的資訊;二是高壓電氣部件介面位置,接外掛程式端子分佈與功能定義及資料檢測;三是各控制系統的故障代碼含義與相關故

障快速排除方法;四是各車型高壓系統電路圖,如電池管理系統電路、電機驅動控制電路、整車控制器電路、充電控制電路;五是高壓系統總成部件,如高壓電池包、驅動電機、車載充電機、DCDC轉換器、變速器與減速器、電動空調系統等的關鍵技術參數;六是常用維護保養資料,如油液規格及用量、熔絲與繼電器盒資訊等。因數據繁多,限於篇幅,不同品牌車型只能擇其要點選錄。 本書由瑞佩爾主編,此外參加編寫的人員還有朱其謙、楊剛偉、吳龍、張祖良、湯耀宗、趙炎、陳金國、劉豔春、徐紅瑋、張志華、馮宇、趙太貴、宋兆傑、陳學清、邱曉龍、朱如盛、周金洪、劉濱、陳棋、孫麗佳、周方、彭斌、王坤、章軍旗、滿亞林、彭啟鳳、李麗娟、徐銀泉。在

編寫過程中,參考了大量汽車廠商的文獻資料,在此,謹向這些資料資訊的原創者們表示由衷的感謝! 囿於筆者水準及成書之匆促,書中不足在所難免,還望廣大讀者朋友及業內專家多多指正。 編者

應用關聯規則分析建構維修零附件耗用分析模型-船用 MTU 主機為例

為了解決機車發電機故障的問題,作者劉文清 這樣論述:

我國經濟發展受不景氣趨勢影響,國防財力成長相對有限,亦面臨兵力結構組織調整與預算持續不足問題,因應兵力規模及支援縮減,且海軍艦艇為遂行保衛海疆之任務,經常執行不特定之任務,其裝備系統複雜,亦因各種不穩定因素之影響,面臨較嚴苛的使用環境,如何在有限之預算下,因應各類艦型裝備不同的需求,期望裝備系統生命週期階段中達成最高之維修效益,有效維持艦艇妥善率,乃是海軍持續不斷努力之目標。 我海軍某艦型動力為 MTU 柴油機驅動雙軸推進,平時執行戰備整訓等任務,經常航行至海象惡劣的海域,故裝備妥善的維持相當重要。主機系統有關修護或保養工程,均依循裝備相關技術命令手冊或廠家操作保養手冊執行,依

上述相關計畫性保養,皆無法有效運用檢測數據去分析組件故障時距,雖在系統故障檢測及故障隔離技術上雖已日趨成熟,但仍未曾運用任何科學的方法有效分析裝備故障高頻率之系統或零組件。本研究透過 MTU 主機零附件歷史維修保養紀錄,及運用資料探勘中關聯法則建構一套主機故障維修原因之關聯分析模式,提供主機零附件裝備維護保養作業規範決策參考,期能降低裝備發生故障維修頻次,提升裝備妥善率,以達成維修費用與成本降低。