化油器混合比的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列各種有用的問答集和懶人包

化油器混合比的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦寫的 圖解汽車構造與原理 (電子書) 和曾逸敦的 圖解汽車構造與原理都 可以從中找到所需的評價。

這兩本書分別來自晨星 和晨星所出版 。

國立中央大學 機械工程學系在職專班 施聖洋所指導 徐永松的 蚶線型滑轉板轉子引擎壓縮部與動力部組合實作測試 (2019),提出化油器混合比關鍵因素是什麼,來自於蚶線、滑轉板、轉子引擎、引擎特性。

而第二篇論文國立成功大學 環境工程學系 蔡俊鴻所指導 林世倫的 汽油車輛引擎尾氣微粒特徵研究 (2019),提出因為有 汽油車、引擎尾氣微粒、排放係數、微粒成份的重點而找出了 化油器混合比的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了化油器混合比,大家也想知道這些:

圖解汽車構造與原理 (電子書)

為了解決化油器混合比的問題,作者 這樣論述:

  全彩解剖圖,詳細解說汽車零件組裝與步驟!   加入電動車及混和動力車原理,全面掌握汽車結構技術的奧祕。   ◎引擎的發展與原理   ◎各式引擎的安裝   ◎供油系統與點火系統   ◎電子引擎的由來與運作   ◎車用電腦的發展與系統應用   ◎傳動系統構件與作動原理   ◎直流馬達與交流馬達 本書特色   以圖解方式有系統地介紹汽車的結構與原理,包含引擎、供油系統、點火系統、車用電腦、傳動系統、馬達等,除基本原理介紹,還有其發展背景及歷史,並加入電動車及混和動力車原理。搭配作者自製的示意圖,讓您全面認識汽車結構及運作原理,學習汽車零件組裝技巧。

蚶線型滑轉板轉子引擎壓縮部與動力部組合實作測試

為了解決化油器混合比的問題,作者徐永松 這樣論述:

本論文嚐試開發設計一個蚶線型滑轉板汽油轉子引擎,其相較於傳統往復式汽油引擎,具有體積小和重量輕(體積及重量約傳統往復式引擎的1/5),以及每轉720度會有四次(比往復式引擎多三次)輸出動力之優點,適合軍用無人機之引擎或電動車之增程器的應用。在實驗室已有的蚶線型滑轉板轉子引擎壓縮部實作設計基礎上(陳寅立,2019),本研究進一步製作動力部,並組合壓縮部及動力部,以進行蚶線型滑轉板轉子引擎動態測試。先用交流馬達調整不同轉速來量測排氣量、壓力變化及扭力損失,並分析壓力與扭力隨著角度變化。引燃測試則用啟動馬達驅動轉子,透過Arduino主機板連結對射式光電感應模組,讀取光柵盤的轉速來調整化油器。選擇

化學計量之燃料和空氣(當量比為1),而燃料選用95無鉛汽油,讓混合氣被壓縮進入動力部後,用火星塞嚐試作引燃測試,目前仍未成功,尚有諸多問題待克服。其一為滑轉板摩擦力問題,因滑轉板旋轉時沒有限位機制,再加上轉速上升會使向心力增加,使得滑轉板會過度摩擦腔體,進而導致滑轉板與腔體間之摩擦力上升,使得需要更大扭力讓引擎能夠啟動運轉,例如轉速設定值在150 rpm時,扭力僅需5 N·m,引擎即可順利啟動運轉,但轉速設定值在1050 rpm時,扭力則需要20 N·m,其引擎才可順利啟動運轉。另一為氣密問題,各腔體內部氣密問題已大致解決,但壓縮部和動力部之間仍有氣密問題尚待解決,此氣密不良問題導致壓縮效果不

佳,動力部引燃處所量測最大壓縮壓力為1.843 bar,僅為設計值5.9 bar的31.2%。而轉速設定值在450 rpm~900 rpm時,動力部的實際排氣量都超過動力部的理論排氣量,代表壓縮部有氣體洩漏至動力部,這是使得引燃測試無法順利進行的主要原因。雖然,目前無法順利成功引燃運轉蚶線型滑轉板汽油轉子引擎,但經由前述實作動態測試,已找出須克服之問題,有助實驗室未來持續開發此一創新型轉子引擎之工作。

圖解汽車構造與原理

為了解決化油器混合比的問題,作者曾逸敦 這樣論述:

  全彩解剖圖,詳細解說汽車零件組裝與步驟!   加入電動車及混和動力車原理,全面掌握汽車結構技術的奧祕。   ◎引擎的發展與原理   ◎各式引擎的安裝   ◎供油系統與點火系統   ◎電子引擎的由來與運作   ◎車用電腦的發展與系統應用   ◎傳動系統構件與作動原理   ◎直流馬達與交流馬達 本書特色   以圖解方式有系統地介紹汽車的結構與原理,包含引擎、供油系統、點火系統、車用電腦、傳動系統、馬達等,除基本原理介紹,還有其發展背景及歷史,並加入電動車及混和動力車原理。搭配作者自製的示意圖,讓您全面認識汽車結構及運作原理,學習汽車零件組裝技巧。

汽油車輛引擎尾氣微粒特徵研究

為了解決化油器混合比的問題,作者林世倫 這樣論述:

本研究探討使用中汽油引擎機動車輛排放微粒與氣態污染物(CO、HC與NOx) 特徵,測試四行程機車(四部;適用不同期別排放標準)與汽車(三部)在怠速與定轉速條件之引擎排放尾氣污染;以EA、IC與ICP-OES分析微粒之化學組成(包括:EC、OC、水溶性離子、金屬元素),建構本土化汽油車輛引擎廢氣微粒指紋資料。研究結果顯示:機車引擎廢氣微粒濃度在0.070~1.070 mg/Nm^3間,適用二期放標準機車排放濃度達2.5 mg/Nm^3;汽車引擎廢氣微粒濃度在0.007~0.086 mg/Nm^3間。測試車微粒濃度重複實驗誤差值CoV皆在30%以下。機車引擎排放微粒皆高於汽車,在怠速與定轉速狀態

,機車平均排放微粒濃度分別為汽車濃度之6倍與16倍。適用二期標準機車於定轉速狀態之平均排放微粒濃度約為五期與六期機車測試值之3~6倍。汽油引擎在怠速狀態之排放微粒濃度最低,在定轉速狀態之微粒濃度呈現隨轉速升高而降低趨勢。各測試車排放濃度則有明顯差距,顯示在相同操作條件,不同引擎型式、排放控制設備、保養狀況皆為可能造成排放微粒濃度差異的主要原因。推估機車與汽車於怠速型態之微粒排放係數為4.6921±1.8772 與0.4742±0.3154 mg/kg-fuel;定轉速(行駛期間)排放係數分別為0.4100±0.4202與0.1076±0.0769 mg/km。 研究觀察分析空燃比與尾氣微粒濃度

相關性顯示,當λ≥1時,引擎尾氣微粒濃度快速降低。機車於定轉速狀態,引擎尾氣微粒濃度與HC及CO濃度具正相關,兩者相關係數皆〉0.95,p-value〈0.01,顯示機車尾氣出現高濃度CO或HC,亦將伴隨排放較高濃度微粒。此外,研究結果顯示,機車引擎尾氣之微粒、HC與CO濃度皆高於汽車引擎尾氣濃度。分析引擎廢氣微粒之碳成分、水溶性離子、金屬元素佔微粒質量百分比分別為40 ~ 74%、 0 ~ 9%與1 ~ 23%。引擎廢氣微粒主要成份為有機碳(OC),主要水溶性離子為NO3-、SO42-、NH4+與Cl-,主要金屬元素為Fe、Ca與Mg。微粒OC比例與引擎轉速相關,怠速型態之微粒碳成分以OC為

主,引擎轉速提高則呈現OC佔總碳比例下降現象。