二極體電路的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列各種有用的問答集和懶人包

二極體電路的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦林螢光 寫的 光電子學:原理、元件與應用(第六版) 和陳達的 電子學精修(含電子學概要大意)(上冊)都 可以從中找到所需的評價。

另外網站他警告「10年內可能沒外勞」 台大教授淡定回:只好少吃救自己也說明:鐳射掃描器通過一個鐳射二極體發出一束光線,然後光線通過棱鏡的反射作用然後掃描器將其轉換成電信號,最終編譯條碼的。鐳射掃描器識別讀取能力高, ...

這兩本書分別來自全華圖書 和大東海所出版 。

國立虎尾科技大學 飛機工程系航空與電子科技碩士班 陳裕愷所指導 伍敏旻的 結合燃料電池與鋰電池之混合動力系統研製 (2021),提出二極體電路關鍵因素是什麼,來自於混合動力系統、燃料電池、鋰電池、四開關降/升壓轉換器、恆流-脈衝充電、開關控制電路。

而第二篇論文明新科技大學 電子工程系碩士在職專班 楊鎮澤所指導 楊雅媛的 應用程式偵測積體電路佈局設計中的漏電 (2021),提出因為有 互補式金屬氧化物半導體、P型金氧半場效電晶體、N型金氧半場效電晶體的重點而找出了 二極體電路的解答。

最後網站探索太陽能變成電的秘密——專訪東海化學系助理教授王迪彥則補充:一般半導體的二極體內含有P 型和N 型半導體,而P 和N 型半導體的接面就叫做PN junction(註 ... 當中質子會通過到薄膜到達陰極,電子則由外電路形成電流到達陰極。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了二極體電路,大家也想知道這些:

光電子學:原理、元件與應用(第六版)

為了解決二極體電路的問題,作者林螢光  這樣論述:

  光電科技及光電裝置已大量應用在各種產業之中,本書介紹各類光電裝置之工作原理與光電轉換機制;有雷射原理與控制雷射光的方法、檢光器原理、半導體雷射、光波導器件等等。內容涵蓋主要之光電裝置,為一本廣度充足、深度適中的讀本!本書適用於大學、科大電子、電機系或研究所和產業界對光電有興趣之工程、研發人員使用。 本書特色   1.本書內容資料新穎並種類寬廣,是研習光電科技者最佳選擇。   2.本書介紹各類光電裝置之工作原理,分別有雷射原理與控制雷射光的方法、光檢器原理、顯示器、半導體雷射、光波導器等。是一本廣度充足、深度適中的讀本!   3.中文編寫之高科技圖書,流暢易讀,學

習效果更甚市售英文光電書籍。

結合燃料電池與鋰電池之混合動力系統研製

為了解決二極體電路的問題,作者伍敏旻 這樣論述:

本論文主要以燃料電池與鋰電池之混合動力系統研製,目前常見的大功率燃料電池系統輸出透過轉換器對鋰電池或其他設備供電,為了因應燃料電池本身輸出電壓範圍寬,及後端設備需求電壓,轉換器設計複雜、效率差、體積大等缺點,因此主要改善體積、重量、效率,並且符合應用在動力設備上穩定運作。本論文以燃料電池與鋰電池對動力設備之應用架構,並且透過計算、模擬及實驗驗證系統架構可行性,研製兩種不同的系統架構,系統架構Ⅰ為非轉換器架構電路,系統架構Ⅱ為轉換器架構電路。當燃料電池受重負載環境下,燃料電池輸出為低電壓大電流,且會有反應延遲情況,此時鋰電池電壓高於燃料電池,由鋰電池分擔輸出部分負載能量,確保負載運作穩定性。系

統架構Ⅰ通過開關控制電路,切換系統工作模式,使燃料電池對負載供電,同時進行鋰電池充電;系統架構Ⅱ以四開關降/升壓轉換器,使燃料電池輸出電壓(46V~90V)調整至48V,供給負載與鋰電池充電使用。根據兩架構在10kW燃料電池運作下計算功率損耗並比較適合之混合動力型應用,依結果架構Ⅰ相較架構Ⅱ功耗少252.52W,最後由系統架構Ⅰ進行溫度測試與瞬間負載測試。

電子學精修(含電子學概要大意)(上冊)

為了解決二極體電路的問題,作者陳達 這樣論述:

  本書由大東海電機類名師團隊陳達老師繼搶手著作「電子學絕招解題」、「電子學精解」,再次針對國家考試、國營考試精心編授,更進階精要,共分上下兩冊,以主題式進行各篇重點主軸說明,期能有效協助考生釐清觀念。   作者依其豐富教學經驗及專業知識,根據最新出題趨勢,刪除教條式冗長內容,以豐富圖文方式說明、醍醐灌頂,協助考生掌握國家考試之電子電路領域。系統性架構有效輔助讀者學習,自基本半導體物理、二極體、電晶體、積體電路至放大器等電路應用,次序編列重點精華,使讀者能詳盡習得電子裝置基礎知識及應用實例;再輔以引導式範例練習按步驟解題,配合章末之「本章題型演練」,針對各章主題整編必讀命

題及擬解申論,讓讀者實戰演練、完整學習,輕鬆迎戰電子學考科!

應用程式偵測積體電路佈局設計中的漏電

為了解決二極體電路的問題,作者楊雅媛 這樣論述:

摘要本論文將針對因互補式金屬氧化物半導體(CMOS, Complementary Metal-Oxide-Semiconductor)高壓製程實際電路設計不當並無法靠模擬程式和驗證程式找出錯誤而造成漏電的問題做分析和提供解決方法。在CMOS非高壓製程設計時P型金氧半場效電晶體(PMOS, P-Metal-Oxide-Semiconductor)與N型金氧半場效電晶體(NMOS, N-Metal-Oxide-Semiconductor)皆是四端點的元件分別是源極(Source)、閘極(Gate)、汲極(Drain)、基極(Bulk),但高壓製程步驟需要PMOS加上N型深井(Deep-NWell

),因此PMOS會變為五端點的元件,而NMOS會因為加上Deep-NWell 則變為六端點的元件。 但在電路設計時PMOS與NMOS均只有四個端點,所以沒有PMOS的第五端點與NMOS的第五和第六端點的定義,因此,當進行IC實體電路設計時因Deep-NWell不允許浮接,所以這第五端點的電位要接到什麼電位就是最大的風險。 而在電路設計模擬時只能模擬出來四個端點的結果,因此不會察覺到任何錯誤,本論文將此部分定義為「實體電路盲區」。「實體電路盲區」會導致漏電,這個現象的形成是由半導體的P型與N型介面形成PN介面的二極體(Diode)導通的過程所造成的漏電現象,這會造成耗電量急遽增加,大幅超越原本的

規劃。 本論文利用電路設計階段所有的應用,思考整體架構後,使用IC實體電路設計的驗證軟體Calibre撰寫驗證程式,將這個寄生二極體導通的部分加以除錯(Debug)以避免漏電(Leakage)。