Focus active Auto ho的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列各種有用的問答集和懶人包

逢甲大學 商學博士學位學程 賴文祥所指導 范志旻的 利用模糊層級分析法 探討半導體產業品牌影響因素之分析 (2021),提出Focus active Auto ho關鍵因素是什麼,來自於模糊層次分析法、半導體產業品牌、關鍵影響因素。

而第二篇論文高雄醫學大學 醫藥暨應用化學系博士班 Vinoth Kumar Ponnusamy、Hans-Uwe Dahms所指導 Revathi Gurunathan的 嗜極端菌的多樣性、鑑定、抗生素抗藥性分析和蛋白酶特性於工業與醫療之應用 (2021),提出因為有 Protease、Extremophiles、Keratinase的重點而找出了 Focus active Auto ho的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Focus active Auto ho,大家也想知道這些:

利用模糊層級分析法 探討半導體產業品牌影響因素之分析

為了解決Focus active Auto ho的問題,作者范志旻 這樣論述:

隨著時間的流逝,半導體創新正在發生變化,可以適用於不同的創新業務,半導體業務的發展至關重要,因而開闢了許多新的職位。半導體業務是一個融合了不同創新能力並協調上游,中途和下游提供商的專業能力的行業,並且通常具有較高的進入壁壘 。廠家已投入花費很多精力與成本進入這個行業,期盼永續經營與回饋利害關係人。本研究第一步採用PEST, 五力 & SWOT分析,在美國,日本和臺灣,這些是國際半導體供應商鏈中的關鍵成員。經過最新半導體有關文獻的討論和分析,發現現有廠商已經建立了行業品牌,並獲得了用戶的信任。因此,品牌研究在這個行業是大家一直在探索的領域。考慮到寫作對話和大師談話,本研究使用分析層次結構(A

HP)研究技術對品牌的關鍵指針在半導體品牌的關鍵部件上進行重要性的排序,然後利用模糊層次分析法(FAHP)來分析這些標記之間的聯繫。經調查,有11項顯著結果可供參考,關鍵是要在半導體品牌建設上取得優異的成績,“客戶價值”和“品牌資產”都必須達到一定的水平。本研究發現,半導體品牌策略應以“客戶價值”為核心,解決客戶問題,創造卓越價值,並隨著技術的進步不斷投入新產品的研發,以奠定半導體品牌長期成功的基礎。

嗜極端菌的多樣性、鑑定、抗生素抗藥性分析和蛋白酶特性於工業與醫療之應用

為了解決Focus active Auto ho的問題,作者Revathi Gurunathan 這樣論述:

TABLE OF CONTENTSThesis Title Page…………………………………………………………………………………..IDedication………………………………………………………………………………………..11Acknowledgements……………………………………………………………………………..111Table of Contents……………………………………………………………………………….1VList of Figures………………………………………………………………………………...V111List of Tables………………………………………………

…………………………………….XList of Abbreviations……………………………………………………………………………X1Abstract………………………………………………………………………………………..X1VChapter 1: General Introduction………………………………………………………………11.2 Kueishantao island and Xenograpsus testudinatus (crab)……………………………...31.3 Antibiotic assay………………………………………………………………………..41.4 Pr

oteases………………………………………………………………………………5 Chapter 2. Review of literature………………………………………………………………...72.1 Extremophiles…………………………………………………………………………82.2 Products from extremophiles…………………………………………………………..92.3 Subtilisins like serine protease………………………………………………………..132.4. Aim of the thesis……………………………………………

………………………..19Chapter 3: Materials and methods……………………………………………………………213.1. Sample collection and bacterial colony isolation…………………………………….223.2. DNA Sequencing and phylogenetic analysis………………………………………...223.3. Phylogenetic tree…………………………………………………………………….233.4. Disc Diffusion Assay for MIC determina

tion………………………………………..243.5. Resazurin assay……………………………………………………………………...263.6. Screening of microorganisms for protease production ……………………………..273.7. Amplification of the serine protease gene…………………………………………..273.8. Transformation in E. coli host cells…………………………………………………273.9. Optimization of induc

tion condition for the expression of SLSP-k in E. coli (DE3)…283.10. Lysis buffer selection ……………………………………………………………...293.11. Purification of recombinant novel SLSP-k enzyme ……………………………….293.12. Zymography and SDS-PAGE ……………………………………………………...293.13. Mass spectrometry analysis of the purified protein

…………………………………313.14. Bioinformatic analysis …………………………………………………………….323.15. FT-IR analysis of casein hydrolysates……………………………………………..323.16. Biochemical characterization………………………………………………………333.16.1. Protease activity assay …………………………………………………..333.16.2 Determination of optimal SLSP-k temperature…………

………………..333.16.3. Determination of optimal SLSP-k pH…………………………………...333.16.4. Effect of inhibitors and surfactants SLSP-k ……………………………..343.16.5. Effect of solvents on SLSP-k………………………………………….......343.16.6. Effect of metal ions on SLSP-k……………………………………………343.16.7. Calculate the Vmax and Km value………………

………………………..353.16.8. Keratinase activity assay…………………………………………………353.17. Cancer cell treatment assay…………………………………………………………………353.17.1 WST assay………………………………………………………………...353.17.2 Migration assay…………………………………………………………...36Chapter 4: Results and Discussion…………………………………………………………….374.1. Bacterial colon

y isolation and phylogenetic analysis……………………………….384.2. Culture characteristics……………………………………………………………….424.3. Bacterial diversity from sediment and biogenic crab substrates……………………..464.4. MIC versus Resazurin Assay………………………………………………………...484.5. Protease activity and gene amplification………………………………

…………....594.6. Purification, Molecular Mass Determination, and Mass Spectrometry Analysis……614.7. Bioinformatic analysis………………………………………………………………654.8. FT-IR analysis of hydrolysed casein………………………………………………...684.9. Biochemical characterization of SLSP-k protease activity………………………….704.9.1. Optimal te

mperature and stability ………………………………………..704.9.2. Optimal pH for protease activity …………………………………………..714.9.3. Effect of metal ions on subtilisin protease activity …………………………724.9.4. Effect of inhibitors and surfactants on subtilisin like serine protease activity ………………………………………………………………. ….734.9.5

. Effects of organic solvent…………………………………………………..754.10. Kinetic studies of protease SLSP-k…………………………………………………764.11. Keratinolytic activity: Degradation of feather and human hair ……………….......774.12. Application in cancer treatment…………………………………………………….794.12.1. Cytotoxic assay and migration……………………

………………………79Chapter 5: Conclusion………………………..………………………...………………………82 Chapter 6: References………………………………………………………………………....84List of FiguresFigure. 1. Graphical abstract………………………………………………………………….V111Figure. 2. Principle of Resazurin assay……………………………………………………………5Figure. 3. Picture representation of aim o

f the thesis……………………………………………..20Figure 4. General scheme of the sample collection and phylogenetic tree construction………….24Figure. 5. Scheme of broth dilution assay………………………………………………………..26Figure. 6. Scheme of protein purification………………………………………………………..31Figure 7. Phylogenetic tree constructed usin

g MEGA X software with 100 bootstrap values……40Figure. 8. Distinctly varied bacterial species…………………………………………………….43Figure. 9. Bacterial diversity from different sediment and biogenic crab substrates……………..47Figure. 10. Venn diagram depicting the species commonly found at the sampling sourceand uniq

ue species found…………………………………………………………………49Figure. 11. The MIC result of bacterial species…………………………………………………..50Figure. 12. A. Protease assay in the presence and absence of ZnSO4 …………………………..61Figure. 13. Protease assay and Phylogenetic tree………………………………………………...63Figure. 14. The SDS Page analysis o

f protein expression.……………………………………….63Figure. 15. (a) Purified Protein (b) Zymography analysis of purified protein …………………..64Figure. 16. Mascot Score Histogram…………………………………………………………….64Figure. 17. Phylogenetic tree constructed using amino acid sequence of subtilisin like serine protease by Mega X

software………………………….…………………………..65Figure. 18. Homologous sequence alignment of protease using Clustal omega program. The catalytic triad is marked with a black box………………………………………….66Figure. 19. Structural prediction ………………………………………………………………….67Figure. 20. NCBI-Blast results of SLS

P-k gene showing similarity with keratinase gene……….68Figure. 21. The structural analog of SLSP-k……………………………………………………..69Figure. 22. FT-IR spectra of SLSP-k with casein as substrate……………………………………70Figure. 23. Relative activity (a) Effect of temperature on activity and stability, (b) Effect of pH

on the activity of SLSP k……………………………………………………………72Figure. 24. Lineweaver–Burk plot. The calculation of Km and Vmax value…………………….77Figure. 25. SEM images (a) Control human hair, (b) Degraded human hair by SLSP ………..….79Figure. 26. SEM images. (a) Control chicken feather, (b) Degraded chicken fea

ther by treatment with SLSP-k incubated for 48 h at 50 ℃…………………………………………...80Figure. 27. The cytotoxic assay of SLSP-k in cancer cells analyzed by WST……………………81Figure. 28. Migration assay in A549 lung cancer cell lines. Control and SLSP-k treated cells after 0 h and 24 h…………………………………………………………………...

81List of tablesTable 1. The natural products obtained from marine isolates…………………………………….14Table 2. PCR conditions………………………………………………………………………....23Table 3. Buffers and their composition used for the optimization of recombinant SLSP-k expression……………………………………………………………………..30Table 4. C

olony forming units of bacterial colonies obtained from different media…………….39Table 5. Bacterial colonies and their phenotypes of the present study and their optimal temperature and media……………………………………….………………………...44Table 6. The MIC values of antibiotics for bacterial strains isolated from HV crab

s…………..54Table 7. Resazurin Assay………………………………………………………………………..58Table 8. Protease assay using skim milk in the presence of different concentration of ZnSO4…62Table 9. Relative activity of SLSP-k with different concentrations of metal ions………………74Table 10. Residual activity of SLSP-k in the presence

of inhibitors and surfactants………..….75Table 11. Residual activity of SLSP-k in the presence of solvents……………………………...76